基于自动乳腺容积扫描(ABVS)影像组学和虚拟触诊定量(VTQ),运用机器学习对浸润性和非浸润性乳腺癌进行术前鉴别。

Preoperative discrimination of invasive and non-invasive breast cancer using machine learning based on automated breast volume scanning (ABVS) radiomics and virtual touch quantification (VTQ).

作者信息

Fan Lifang, Wu Yimin, Wu Shujian, Zhang Chaoxue, Zhu Xiangming

机构信息

The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui Province, China.

School of Medical Imageology, Wannan Medical College, Wuhu, Anhui, China.

出版信息

Discov Oncol. 2024 Oct 16;15(1):565. doi: 10.1007/s12672-024-01438-7.

Abstract

PURPOSE

Evaluating the efficacy of machine learning for preoperative differentiation between invasive and non-invasive breast cancer through integrated automated breast volume scanning (ABVS) radiomics and virtual touch quantification (VTQ) techniques.

METHODS

We conducted an extensive retrospective analysis on a cohort of 171 breast cancer patients, differentiating them into 124 invasive and 47 non-invasive cases. The data was meticulously divided into a training set (n = 119) and a validation set (n = 52), maintaining a 70:30 ratio. Several machine learning models were developed and tested, including Logistic Regression (LR), Random Forest (RF), Decision Tree (DT), and Support Vector Machine (SVM). Their performance was evaluated using the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC), and visualized the feature contributions of the optimal model using Shapley Additive Explanations (SHAP).

RESULTS

Through both univariate and multivariate logistic regression analyses, we identified key independent predictors in differentiating between invasive and non-invasive breast cancer types: coronal plane features, Shear Wave Velocity (SWV), and Radscore. The AUC scores for our machine learning models varied, ranging from 0.625 to 0.880, with the DT model demonstrating a notably high AUC of 0.874 in the validation set.

CONCLUSION

Our findings indicate that machine learning models, which integrate ABVS radiomics and VTQ, are significantly effective in preoperatively distinguishing between invasive and non-invasive breast cancer. Particularly, the DT model stood out in the validation set, establishing it as the primary model in our study. This highlights its potential utility in enhancing clinical decision-making processes.

摘要

目的

通过集成自动乳腺容积扫描(ABVS)放射组学和虚拟触诊定量(VTQ)技术,评估机器学习在术前鉴别浸润性和非浸润性乳腺癌方面的疗效。

方法

我们对171例乳腺癌患者进行了广泛的回顾性分析,将他们分为124例浸润性病例和47例非浸润性病例。数据被精心分为训练集(n = 119)和验证集(n = 52),保持70:30的比例。开发并测试了几种机器学习模型,包括逻辑回归(LR)、随机森林(RF)、决策树(DT)和支持向量机(SVM)。使用受试者操作特征(ROC)曲线下面积(AUC)评估它们的性能,并使用Shapley加性解释(SHAP)可视化最佳模型的特征贡献。

结果

通过单变量和多变量逻辑回归分析,我们确定了区分浸润性和非浸润性乳腺癌类型的关键独立预测因素:冠状面特征、剪切波速度(SWV)和Radscore。我们的机器学习模型的AUC分数各不相同,范围从0.625到0.880,DT模型在验证集中显示出显著高的AUC为0.874。

结论

我们的研究结果表明,整合ABVS放射组学和VTQ的机器学习模型在术前区分浸润性和非浸润性乳腺癌方面具有显著效果。特别是,DT模型在验证集中表现突出,成为我们研究中的主要模型。这突出了其在加强临床决策过程中的潜在效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1066/11480293/6707bee13736/12672_2024_1438_Fig1_HTML.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索