Suppr超能文献

一种用于自动检测潮流环境中表面湍流特征的实验方法。

An Experimental Methodology for Automated Detection of Surface Turbulence Features in Tidal Stream Environments.

作者信息

Slingsby James, Scott Beth E, Kregting Louise, McIlvenny Jason, Wilson Jared, Helleux Fanny, Williamson Benjamin J

机构信息

Environmental Research Institute, University of the Highlands and Islands, Thurso KW14 7EE, UK.

School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.

出版信息

Sensors (Basel). 2024 Sep 24;24(19):6170. doi: 10.3390/s24196170.

Abstract

Tidal stream environments are important areas of marine habitat for the development of marine renewable energy (MRE) sources and as foraging hotspots for megafaunal species (seabirds and marine mammals). Hydrodynamic features can promote prey availability and foraging efficiency that influences megafaunal foraging success and behaviour, with the potential for animal interactions with MRE devices. Uncrewed aerial vehicles (UAVs) offer a novel tool for the fine-scale data collection of surface turbulence features and animals, which is not possible through other techniques, to provide information on the potential environmental impacts of anthropogenic developments. However, large imagery datasets are time-consuming to manually review and analyse. This study demonstrates an experimental methodology for the automated detection of turbulence features within UAV imagery. A deep learning architecture, specifically a Faster R-CNN model, was used to autonomously detect kolk-boils within UAV imagery of a tidal stream environment. The model was trained on pre-existing, labelled images of kolk-boils that were pre-treated using a suite of image enhancement techniques based on the environmental conditions present within each image. A 75-epoch model variant provided the highest average recall and precision values; however, it appeared to be limited by sub-optimal detections of false positive values. Although further development is required, including the creation of standardised image data pools, increased model benchmarking and the advancement of tailored pre-processing techniques, this work demonstrates the viability of utilising deep learning to automate the detection of surface turbulence features within a tidal stream environment.

摘要

潮流环境是海洋可再生能源(MRE)发展的重要海洋栖息地,也是大型动物物种(海鸟和海洋哺乳动物)的觅食热点。水动力特征可以提高猎物的可获取性和觅食效率,从而影响大型动物的觅食成功率和行为,动物还有可能与MRE设备相互作用。无人驾驶飞行器(UAV)为精细尺度地收集表面湍流特征和动物数据提供了一种新颖的工具,而这是其他技术无法做到的,它能够提供有关人为开发潜在环境影响的信息。然而,大型图像数据集人工审查和分析起来很耗时。本研究展示了一种用于自动检测无人机图像中湍流特征的实验方法。一种深度学习架构,特别是更快区域卷积神经网络(Faster R-CNN)模型,被用于在潮流环境的无人机图像中自动检测涡旋。该模型是在预先存在的、带有涡旋标记的图像上进行训练的,这些图像基于每张图像中存在的环境条件,使用一套图像增强技术进行了预处理。一个75轮次的模型变体提供了最高的平均召回率和精确率值;然而,它似乎受到误报值次优检测的限制。尽管还需要进一步发展,包括创建标准化图像数据池、增加模型基准测试以及改进定制预处理技术,但这项工作证明了利用深度学习自动检测潮流环境中表面湍流特征的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5b7/11478349/901257ff60c2/sensors-24-06170-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验