Suppr超能文献

基于卷积神经网络和口部长宽比的眼部和口部视觉分析的驾驶员瞌睡实时嵌入式系统

A Real-Time Embedded System for Driver Drowsiness Detection Based on Visual Analysis of the Eyes and Mouth Using Convolutional Neural Network and Mouth Aspect Ratio.

机构信息

LIECAR Laboratory, Universidad Nacional de San Antonio Abad del Cusco (UNSAAC), Cusco 08003, Peru.

PAVIC Laboratory, University of Acre (UFAC), Rio Branco 69915-900, Brazil.

出版信息

Sensors (Basel). 2024 Sep 27;24(19):6261. doi: 10.3390/s24196261.

Abstract

Currently, the number of vehicles in circulation continues to increase steadily, leading to a parallel increase in vehicular accidents. Among the many causes of these accidents, human factors such as driver drowsiness play a fundamental role. In this context, one solution to address the challenge of drowsiness detection is to anticipate drowsiness by alerting drivers in a timely and effective manner. Thus, this paper presents a Convolutional Neural Network (CNN)-based approach for drowsiness detection by analyzing the eye region and Mouth Aspect Ratio (MAR) for yawning detection. As part of this approach, endpoint delineation is optimized for extraction of the region of interest (ROI) around the eyes. An NVIDIA Jetson Nano-based device and near-infrared (NIR) camera are used for real-time applications. A Driver Drowsiness Artificial Intelligence (DD-AI) architecture is proposed for the eye state detection procedure. In a performance analysis, the results of the proposed approach were compared with architectures based on InceptionV3, VGG16, and ResNet50V2. Night-Time Yawning-Microsleep-Eyeblink-Driver Distraction (NITYMED) was used for training, validation, and testing of the architectures. The proposed DD-AI network achieved an accuracy of 99.88% with the NITYMED test data, proving superior to the other networks. In the hardware implementation, tests were conducted in a real environment, resulting in 96.55% and 14 fps on average for the DD-AI network, thereby confirming its superior performance.

摘要

目前,道路上行驶的车辆数量持续稳步增加,导致车辆事故也相应增多。在导致这些事故的诸多原因中,驾驶员疲劳等人为因素起着重要作用。在这种情况下,解决疲劳检测问题的一种方法是通过及时有效地向驾驶员发出警报来预测疲劳。因此,本文提出了一种基于卷积神经网络(CNN)的方法,通过分析眼睛区域和张嘴程度比(MAR)来检测打哈欠,从而实现对驾驶员疲劳的检测。在该方法中,通过优化端点划定,提取出眼睛感兴趣区域(ROI)。本文使用 NVIDIA Jetson Nano 设备和近红外(NIR)相机进行实时应用。提出了一种驾驶员疲劳人工智能(DD-AI)架构,用于进行眼睛状态检测。在性能分析中,将所提出的方法的结果与基于 InceptionV3、VGG16 和 ResNet50V2 的架构进行了比较。使用 Night-Time Yawning-Microsleep-Eyeblink-Driver Distraction(NITYMED)数据集对这些架构进行了训练、验证和测试。所提出的 DD-AI 网络在 NITYMED 测试数据上的准确率达到了 99.88%,证明其性能优于其他网络。在硬件实现中,在真实环境中进行了测试,DD-AI 网络的平均准确率为 96.55%,帧率为 14fps,进一步证实了其优越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c5/11479241/5ce452cbc441/sensors-24-06261-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验