Suppr超能文献

基于视觉特征的实时机器学习驾驶员困倦检测

Real-Time Machine Learning-Based Driver Drowsiness Detection Using Visual Features.

作者信息

Albadawi Yaman, AlRedhaei Aneesa, Takruri Maen

机构信息

Department of Computer Science and Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.

College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates.

出版信息

J Imaging. 2023 Apr 29;9(5):91. doi: 10.3390/jimaging9050091.

Abstract

Drowsiness-related car accidents continue to have a significant effect on road safety. Many of these accidents can be eliminated by alerting the drivers once they start feeling drowsy. This work presents a non-invasive system for real-time driver drowsiness detection using visual features. These features are extracted from videos obtained from a camera installed on the dashboard. The proposed system uses facial landmarks and face mesh detectors to locate the regions of interest where mouth aspect ratio, eye aspect ratio, and head pose features are extracted and fed to three different classifiers: random forest, sequential neural network, and linear support vector machine classifiers. Evaluations of the proposed system over the National Tsing Hua University driver drowsiness detection dataset showed that it can successfully detect and alarm drowsy drivers with an accuracy up to 99%.

摘要

与困倦相关的汽车事故持续对道路安全产生重大影响。一旦驾驶员开始感到困倦就发出警报,许多此类事故便可避免。这项工作提出了一种使用视觉特征进行实时驾驶员困倦检测的非侵入性系统。这些特征从安装在仪表板上的摄像头获取的视频中提取。所提出的系统使用面部标志和面部网格检测器来定位感兴趣区域,从中提取嘴部纵横比、眼部纵横比和头部姿态特征,并将其输入到三种不同的分类器中:随机森林、序列神经网络和线性支持向量机分类器。在所提出的系统对国立清华大学驾驶员困倦检测数据集进行的评估表明,它能够以高达99%的准确率成功检测并警示困倦的驾驶员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51c2/10219078/3c9829f64db9/jimaging-09-00091-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验