Cho Soo Been, Soleh Hidayat Mohamad, Choi Ji Won, Hwang Woon-Ha, Lee Hoonsoo, Cho Young-Son, Cho Byoung-Kwan, Kim Moon S, Baek Insuck, Kim Geonwoo
Department of Biosystems Engineering, College of Agricultural and Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea.
Division of Crop Production and Physiology, National Institute of Crop Science, Rural Development Administration, 100, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeonbuk-do, Republic of Korea.
Sensors (Basel). 2024 Sep 29;24(19):6313. doi: 10.3390/s24196313.
This study systematically reviews the integration of artificial intelligence (AI) and remote sensing technologies to address the issue of crop water stress caused by rising global temperatures and climate change; in particular, it evaluates the effectiveness of various non-destructive remote sensing platforms (RGB, thermal imaging, and hyperspectral imaging) and AI techniques (machine learning, deep learning, ensemble methods, GAN, and XAI) in monitoring and predicting crop water stress. The analysis focuses on variability in precipitation due to climate change and explores how these technologies can be strategically combined under data-limited conditions to enhance agricultural productivity. Furthermore, this study is expected to contribute to improving sustainable agricultural practices and mitigating the negative impacts of climate change on crop yield and quality.
本研究系统回顾了人工智能(AI)与遥感技术的整合,以解决全球气温上升和气候变化导致的作物水分胁迫问题;特别是,它评估了各种无损遥感平台(RGB、热成像和高光谱成像)和人工智能技术(机器学习、深度学习、集成方法、生成对抗网络和可解释人工智能)在监测和预测作物水分胁迫方面的有效性。分析聚焦于气候变化导致的降水变异性,并探讨如何在数据有限的条件下将这些技术进行战略组合,以提高农业生产力。此外,本研究有望为改进可持续农业实践以及减轻气候变化对作物产量和质量的负面影响做出贡献。