Suppr超能文献

基于机器学习的高温下纳米混凝土材料抗压强度研究

Compressive strength of nano concrete materials under elevated temperatures using machine learning.

作者信息

Zeyad Abdullah M, Mahmoud Alaa A, El-Sayed Alaa A, Aboraya Ayman M, Fathy Islam N, Zygouris Nikos, Asteris Panagiotis G, Agwa Ibrahim Saad

机构信息

Civil and Architectural Engineering Department, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia., Jazan University, Jazan, Kingdom of Saudi Arabia.

Civil Engineering Department, Faculty of Engineering, Fayoum University, Fayoum, Egypt.

出版信息

Sci Rep. 2024 Oct 16;14(1):24246. doi: 10.1038/s41598-024-73713-0.

Abstract

In this study, four Artificial intelligence (AI) - based machine learning models were developed to estimate the Residual compressive strength (RCS) value of concrete supported with nano additives of Nanocarbon tubes (NCTs) and Nano alumina (NAl), after exposure to elevated temperatures ranging from 200 to 800 degrees. These models were developed via adapting meta- heuristic models including the Water cycle algorithm (WCA), Genetic algorithm (GA), and classical AI models of Artificial neural networks (ANNs), Fuzzy logic models (FLM), in addition to the statistical method of Multiple linear regression (MLR). 156 post heating experimental results available as a literature data (represents four input parameters of temperature change, heat exposure duration, nanomaterial type, and replacement proportion) are used to achieve the study's objective. Results of the developed models demonstrated that ANN and FLM have strong potential in predicting RCS. However, it is often infeasible to generate practical equations that relate input and output variables from these models. Upon analysing the results of the WCA and GA, it was found that WCA yielded the most accurate predictions based on all performance indicators. Furthermore, RCS prediction equations with superior accuracy were derived utilizing the meta-heuristic AI models of WCA and GA, with Mean absolute errors (MAEs) of 3.09 kg/cm² and 3.53 kg/cm² for the training, 1.91 kg/cm² and 2.72 kg/cm² for the validation, and 1.91 kg/cm² and 2.72 kg/cm² for the testing data sets, respectively. Additionally, sensitivity analysis via neural networks weights and SHAP investigation were performed to reveals the impact and relationship of the input variables with the output variables. Both techniques reveal that temperature degree and time of exposure had the highest positive impact on RCS value, followed by NAl and NCTs, in order.

摘要

在本研究中,开发了四种基于人工智能(AI)的机器学习模型,用于估计在200至800摄氏度的高温下,添加了纳米碳管(NCTs)和纳米氧化铝(NAl)纳米添加剂的混凝土的残余抗压强度(RCS)值。这些模型是通过采用元启发式模型开发的,包括水循环算法(WCA)、遗传算法(GA),以及人工神经网络(ANNs)、模糊逻辑模型(FLM)等经典人工智能模型,此外还采用了多元线性回归(MLR)的统计方法。利用作为文献数据的156个加热后实验结果(代表温度变化、热暴露持续时间、纳米材料类型和替代比例四个输入参数)来实现研究目标。所开发模型的结果表明,ANN和FLM在预测RCS方面具有很强的潜力。然而,从这些模型中生成关联输入和输出变量的实用方程通常是不可行的。在分析WCA和GA的结果时,发现基于所有性能指标,WCA产生了最准确的预测。此外,利用WCA和GA的元启发式人工智能模型推导出了具有更高精度的RCS预测方程,训练数据集的平均绝对误差(MAE)分别为3.09 kg/cm²和3.53 kg/cm²,验证数据集的MAE分别为1.91 kg/cm²和2.72 kg/cm²,测试数据集的MAE分别为1.91 kg/cm²和2.72 kg/cm²。此外,还通过神经网络权重进行了敏感性分析,并进行了SHAP研究,以揭示输入变量与输出变量的影响和关系。这两种技术都表明,温度和暴露时间对RCS值的正向影响最大,其次依次是NAl和NCTs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/11484839/3aa88ee523f9/41598_2024_73713_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验