Beaver Logan E, Shah Zameer Hussain, Sokolich Max, Yilmaz Alp Eren, Yang Yanda, Belta Calin, Das Sambeeta
Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA.
Department of Mechanical Engineering, University of Delaware, Newark, DE 19711, USA.
Int Conf Manip Autom Robot Small Scales. 2023 Oct;2023. doi: 10.1109/marss58567.2023.10294164. Epub 2023 Oct 31.
The development of magnetically-actuated micro-robots is of great interest for emerging medical applications due to their inherent safety, low cost to manufacture, and flexibility. In many practical applications, precise control over the motion of the microrobots is a strong requirement. In these contexts, closed-loop control is a practical tool to adjust the microrobots' control inputs in real time. In this work, we describe a process to quickly fabricate a large number of heterogeneous microrobots using colloidal synthesis. We simultaneously develop a closed-loop control law that drives the microrobots to a desired formation in the plane. In addition, we prove that heterogeneity in the microrobot dynamics is necessary to generate arbitrary formations. Finally, using experimental data, we show in simulation that microrobots can be driven to any arbitrary formation using our control law.
由于其固有的安全性、低成本制造以及灵活性,磁驱动微型机器人的发展在新兴医疗应用中备受关注。在许多实际应用中,对微型机器人运动的精确控制是一项强烈要求。在这些情况下,闭环控制是实时调整微型机器人控制输入的实用工具。在这项工作中,我们描述了一种使用胶体合成快速制造大量异构微型机器人的过程。我们同时开发了一种闭环控制律,可将微型机器人驱动到平面中的期望编队。此外,我们证明了微型机器人动力学中的异质性对于生成任意编队是必要的。最后,利用实验数据,我们在模拟中表明,使用我们的控制律可以将微型机器人驱动到任何任意编队。