Suppr超能文献

肿瘤影像学中的差错来龙去脉:放射科医生的DAC框架

The ins and outs of errors in oncology imaging: the DAC framework for radiologists.

作者信息

Iannessi Antoine, Beaumont Hubert, Aguillera Carlos, Nicol Francois, Bertrand Anne-Sophie

机构信息

Diagnostic and Interventional Radiology Department, Cancer Center Antoine Lacassagne, Nice, France.

Median Technologies, Imaging Lab Research Unit, Valbonne, France.

出版信息

Front Oncol. 2024 Oct 4;14:1402838. doi: 10.3389/fonc.2024.1402838. eCollection 2024.

Abstract

With the increasingly central role of imaging in medical diagnosis, understanding and monitoring radiological errors has become essential. In the field of oncology, the severity of the disease makes radiological error more visible, with both individual consequences and public health issues. The quantitative trend radiology allows to consider the diagnostic task as a problem of classification supported by the latest neurocognitive theories in explaining decision making errors, this purposeful model provides an actionable framework to support root cause analysis of diagnostic errors in radiology and envision corresponding risk-management strategies. The D for Data, A for Analysis and C for Communication are the three drivers of errors and we propose a practical toolbox for our colleagues to prevent individual and systemic sources of error.

摘要

随着成像在医学诊断中发挥越来越核心的作用,理解和监测放射学错误变得至关重要。在肿瘤学领域,疾病的严重性使放射学错误更加明显,这涉及个体后果和公共卫生问题。定量趋势放射学能够将诊断任务视为一个分类问题,并借助最新的神经认知理论来解释决策错误,这个有针对性的模型提供了一个可操作的框架,以支持放射学诊断错误的根本原因分析,并设想相应的风险管理策略。数据(Data)、分析(Analysis)和沟通(Communication)是错误的三个驱动因素,我们为同事们提出了一个实用的工具箱,以防止个体和系统性的错误来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05fe/11486622/4df8fbd2ec1f/fonc-14-1402838-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验