Alexandre Miguel, Águas Hugo, Fortunato Elvira, Martins Rodrigo, Mendes Manuel J
Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, i3N/CENIMAT, Campus de Caparica, 2829-516 Caparica, Portugal.
ACS Photonics. 2024 Jul 24;11(10):4048-4057. doi: 10.1021/acsphotonics.4c00760. eCollection 2024 Oct 16.
The outstanding physical properties of dots-in-host (QD@Host) hetero semiconductors demand detailed methods to fundamentally understand the best routes to optimize their potentialities for different applications. In this work, a 4-band k.p-based method was developed for rock-salt quantum dots (QDs) that describes the complete optical properties of arbitrary QD@Host systems, trailblazing the way for the full optoelectronic analysis of quantum-structured solar cells. Starting with the determination of the QD bandgap and validation against well-established literature results, the electron transition rate is then computed and analyzed against the main system parameters. This is followed by a multiparameter optimization, considering intermediate band solar cells as a promising application, where the best QD configuration was determined, together with the corresponding QD@Host absorption spectrum, in view of attaining the theoretical maximum efficiency (∼50%) of this photovoltaic technology. The results show the creation of pronounced sub-bandgap absorption due to the electronic transitions from/to the quantum-confined states, which enables a much broader exploitation of the sunlight spectrum.
主体材料中量子点(QD@Host)异质半导体优异的物理性能需要详细的方法,以便从根本上理解优化其在不同应用中潜力的最佳途径。在这项工作中,针对岩盐量子点(QDs)开发了一种基于4能带k.p的方法,该方法描述了任意QD@Host系统的完整光学特性,为量子结构太阳能电池的全光电子分析开辟了道路。从确定量子点带隙并对照已确立的文献结果进行验证开始,接着计算电子跃迁速率并针对主要系统参数进行分析。随后进行多参数优化,将中间带太阳能电池视为一个有前景的应用,在该应用中确定了最佳量子点配置以及相应的QD@Host吸收光谱,以期达到这种光伏技术的理论最大效率(约50%)。结果表明,由于量子受限态的电子跃迁,产生了明显的亚带隙吸收,这使得能够更广泛地利用太阳光谱。