Lindel Frieder, Lentrodt Dominik, Buhmann Stefan Yoshi, Schäfer Christian
Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany.
J Chem Phys. 2024 Oct 21;161(15). doi: 10.1063/5.0234989.
Collective light-matter interactions have been used to control chemistry and energy transfer, yet accessible approaches that combine ab initio methodology with large many-body quantum optical systems are missing due to the fast increase in computational cost for explicit simulations. We introduce an accessible ab initio quantum embedding concept for many-body quantum optical systems that allows us to treat the collective coupling of molecular many-body systems effectively in the spirit of macroscopic quantum electrodynamics while keeping the rigor of ab initio quantum chemistry for the molecular structure. Our approach fully includes the quantum fluctuations of the polaritonic field and yet remains much simpler and more intuitive than complex embedding approaches such as dynamical mean-field theory. We illustrate the underlying assumptions by comparison to the Tavis-Cummings model. The intuitive application of the quantized embedding approach and its transparent limitations offer a practical framework for the field of ab initio polaritonic chemistry to describe collective effects in realistic molecular ensembles.
集体光与物质相互作用已被用于控制化学和能量转移,但由于显式模拟的计算成本快速增加,目前缺少将从头算方法与大型多体量子光学系统相结合的可行方法。我们为多体量子光学系统引入了一种可行的从头算量子嵌入概念,该概念使我们能够在宏观量子电动力学的框架内有效地处理分子多体系统的集体耦合,同时保持分子结构的从头算量子化学的严谨性。我们的方法充分考虑了极化子场的量子涨落,但仍比诸如动态平均场理论等复杂的嵌入方法简单直观得多。我们通过与塔维斯 - 卡明斯模型进行比较来说明其基本假设。量子化嵌入方法的直观应用及其明显的局限性为从头算极化子化学领域描述实际分子系综中的集体效应提供了一个实用框架。