Suppr超能文献

运用代谢组学和机器学习发现早期乳腺癌诊断的生物标志物。

Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis.

机构信息

Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.

出版信息

PLoS One. 2024 Oct 21;19(10):e0311810. doi: 10.1371/journal.pone.0311810. eCollection 2024.

Abstract

There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validation may enhance the identification and validation of novel biomarkers for breast cancer screening. In this study, we employed a multimodal omics approach to identify and validate potential biomarkers capable of differentiating between patients with breast cancer and those with benign tumors. Our findings indicated that ether-linked phosphatidylcholine exhibited a significant difference between invasive ductal carcinoma and benign tumors, including cases with inconsistent mammography results. We observed alterations in numerous lipid species, including sphingomyelin, triacylglycerol, and free fatty acids, in the breast cancer group. Furthermore, we identified several dysregulated hydrophilic metabolites in breast cancer, such as glutamate, glycochenodeoxycholate, and dimethyluric acid. Through robust multivariate receiver operating characteristic analysis utilizing machine learning models, either linear support vector machines or random forest models, we successfully distinguished between cancerous and benign cases with promising outcomes. These results emphasize the potential of metabolic biomarkers to complement other criteria in breast cancer screening. Future studies are essential to further validate the metabolic biomarkers identified in our study and to develop assays for clinical applications.

摘要

目前迫切需要更好的生物标志物来检测早期乳腺癌。在代谢组学为中心的生物标志物发现和验证中,联合使用非靶向代谢组学和脂质组学以及先进的数据挖掘方法,可能会增强对新型乳腺癌筛查生物标志物的识别和验证。在这项研究中,我们采用多组学方法来识别和验证潜在的生物标志物,以区分乳腺癌患者和良性肿瘤患者。我们的研究结果表明,醚连接型磷脂酰胆碱在浸润性导管癌和良性肿瘤之间存在显著差异,包括那些与乳腺 X 线摄影结果不一致的病例。我们观察到乳腺癌组中许多脂质种类发生了改变,包括鞘磷脂、三酰甘油和游离脂肪酸。此外,我们还鉴定出了几种在乳腺癌中失调的亲水性代谢物,如谷氨酸、甘氨胆酸和二甲基尿酸。通过利用机器学习模型(线性支持向量机或随机森林模型)进行稳健的多元接收器操作特征分析,我们成功地区分了癌症和良性病例,具有很好的预测效果。这些结果强调了代谢标志物在乳腺癌筛查中补充其他标准的潜力。未来的研究对于进一步验证我们研究中鉴定的代谢标志物以及开发用于临床应用的检测方法至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/717d/11493280/6c8b545205bf/pone.0311810.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验