Suppr超能文献

超越传统方法:LISS IV 和 Sentinel 2A 影像的创新性融合,为喜马拉雅塔尔羊生境适宜性提供无与伦比的深入洞察。

Beyond traditional methods: Innovative integration of LISS IV and Sentinel 2A imagery for unparalleled insight into Himalayan ibex habitat suitability.

机构信息

Zooological Survey of India, Prani Vigyan Bhawan, Kolkata, West Bengal, India.

University of Madras, Chennai, Tamil Nadu, India.

出版信息

PLoS One. 2024 Oct 21;19(10):e0306917. doi: 10.1371/journal.pone.0306917. eCollection 2024.

Abstract

The utilization of satellite images in conservation research is becoming more prevalent due to advancements in remote sensing technologies. To achieve accurate classification of wildlife habitats, it is important to consider the different capabilities of spectral and spatial resolution. Our study aimed to develop a method for accurately classifying habitat types of the Himalayan ibex (Capra sibirica) using satellite data. We used LISS IV and Sentinel 2A data to address both spectral and spatial issues. Furthermore, we integrated the LISS IV data with the Sentinel 2A data, considering their individual geometric information. The Random Forest approach outperformed other algorithms in supervised classification techniques. The integrated image had the highest level of accuracy, with an overall accuracy of 86.17% and a Kappa coefficient of 0.84. Furthermore, to delineate the suitable habitat for the Himalayan ibex, we employed ensemble modelling techniques that incorporated Land Cover Land Use data from LISS IV, Sentinel 2A, and Integrated image, separately. Additionally, we incorporated other predictors including topographical features, soil and water radiometric indices. The integrated image demonstrated superior accuracy in predicting the suitable habitat for the species. The identification of suitable habitats was found to be contingent upon the consideration of two key factors: the Soil Adjusted Vegetation Index and elevation. The study findings are important for advancing conservation measures. Using accurate classification methods helps identify important landscape components. This study offers a novel and important approach to conservation planning by accurately categorising Land Cover Land Use and identifying critical habitats for the species.

摘要

由于遥感技术的进步,卫星图像在保护研究中的应用越来越普遍。为了实现野生动物栖息地的准确分类,考虑光谱和空间分辨率的不同能力非常重要。我们的研究旨在开发一种使用卫星数据准确分类喜马拉雅塔尔羊(Capra sibirica)栖息地类型的方法。我们使用 LISS IV 和 Sentinel 2A 数据来解决光谱和空间问题。此外,我们还将 LISS IV 数据与 Sentinel 2A 数据集成在一起,考虑到它们各自的几何信息。随机森林方法在监督分类技术中优于其他算法。集成图像具有最高的准确性,总体准确性为 86.17%,Kappa 系数为 0.84。此外,为了划定喜马拉雅塔尔羊的适宜栖息地,我们采用了集成模型技术,分别使用 LISS IV、Sentinel 2A 和集成图像中的土地覆盖土地利用数据。此外,我们还纳入了其他预测因子,包括地形特征、土壤和水辐射指标。集成图像在预测物种适宜栖息地方面表现出更高的准确性。适宜栖息地的识别取决于两个关键因素的考虑:土壤调整植被指数和海拔。这些研究结果对于推进保护措施非常重要。使用准确的分类方法有助于确定重要的景观组成部分。本研究通过准确分类土地覆盖土地利用和识别物种关键栖息地,为保护规划提供了一种新颖而重要的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验