Suppr超能文献

一体化一氧化碳捕获与转化:来自甲酰基甲烷呋喃脱氢酶的经验教训。

All-in-One CO Capture and Transformation: Lessons from Formylmethanofuran Dehydrogenases.

作者信息

Lemaire Olivier N, Wagner Tristan

机构信息

Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.

出版信息

Acc Chem Res. 2024 Dec 17;57(24):3512-3523. doi: 10.1021/acs.accounts.4c00623. Epub 2024 Nov 25.

Abstract

Carbon-one-unit (C1) feedstocks are generally used in the chemical synthesis of organic molecules, such as solvents, drugs, polymers, and fuels. Contrary to the dangerous and polluting carbon monoxide mostly coming from fossil fuels, formate and formamide are attractive alternative feedstocks for chemical synthesis. As these are currently mainly obtained from the oil industry, novel synthetic routes have been developed based on the transformation of the greenhouse gas CO. Such developments are motivated by the urgent need for carbon chemical recycling, leading to a sustainable future. The inert nature of CO represents a challenge for chemists to activate and specifically convert the molecule through an affordable and efficient process. The chemical transformation could be inspired by biological CO activation, in which highly specialized enzymes perform atmospheric CO fixation through relatively abundant metal catalysts. In this Account, we describe and discuss the potential of one of the most efficient biological CO-converting systems: the formylmethanofuran dehydrogenase (abbreviated as FMD).FMDs are multienzymatic complexes found in archaea that capture CO as a formyl group branched on the amine moiety of the methanofuran (MFR) cofactor. This overall reaction leading to formyl-MFR production does not require ATP hydrolysis as compared to the CO-fixing microbes relying on the reductive Wood-Ljungdahl pathway, highlighting a different operative mode that saves cellular energy. FMD reaction represents the entry point in hydrogenotrophic methanogenesis (H and CO dependent or formate dependent) and operates in reverse in other methanogenic pathways and microbial metabolisms. Therefore, FMD is a key enzyme in the planetary carbon cycle. After decades of investigations, recent studies have provided a description of the FMD structure, reaction mechanism, and potential for the electroreduction of CO, to which our laboratory has been actively contributing. FMD is an "all-in-one" enzyme catalyzing a redox-active transformation coupled to a redox-neutral transformation at two very different metal cofactors where new C-H and C-N bonds are made. First, the principle of the overall reaction consisting of an exergonic CO reduction coupled with an endergonic formate condensation on MFR is resumed. Then, this Account exposes the molecular details of the active sites and provides an overview of each catalytic mechanism. It also describes the natural versatility of electron-delivery modules fueling CO reduction and extends it to the possibilities of using artificial systems such as electrodes. A perspective concludes on how the mechanistic of FMD could be applied to produce CO-based chemical intermediates to synthesize organic molecules. Indeed, through its biochemical properties, the enzyme opens opportunities for CO electroreduction to generate molecules such as formate and formamide derivatives, which are all intermediates for synthesizing organic compounds. Transferring the chemical knowledge acquired from these biological systems would provide coherent models that can lead to further development in the field of synthetic biology and bio-inspired synthetic chemistry to perform large-scale CO conversion into building blocks for chemical synthesis.

摘要

一碳单位(C1)原料通常用于有机分子的化学合成,如溶剂、药物、聚合物和燃料。与主要来自化石燃料的危险且污染环境的一氧化碳不同,甲酸盐和甲酰胺是化学合成中具有吸引力的替代原料。由于这些目前主要从石油工业中获得,因此已经基于温室气体CO的转化开发了新的合成路线。这些发展是由碳化学循环的迫切需求推动的,以实现可持续的未来。CO的惰性对化学家来说是一个挑战,需要通过经济高效的过程来激活并特异性地转化该分子。这种化学转化可以受到生物CO激活的启发,其中高度专业化的酶通过相对丰富的金属催化剂进行大气CO固定。在本综述中,我们描述并讨论了最有效的生物CO转化系统之一:甲酰基呋喃脱氢酶(简称为FMD)的潜力。FMD是在古细菌中发现的多酶复合物,它将CO捕获为连接在呋喃甲醇(MFR)辅因子胺部分上的甲酰基。与依赖还原性伍德-Ljungdahl途径的CO固定微生物相比,导致甲酰基-MFR产生的整个反应不需要ATP水解,突出了一种节省细胞能量的不同操作模式。FMD反应代表了氢营养型甲烷生成(依赖H和CO或依赖甲酸盐)的入口点,并且在其他产甲烷途径和微生物代谢中以相反的方向运行。因此,FMD是地球碳循环中的关键酶。经过数十年的研究,最近的研究已经对FMD的结构、反应机制以及CO电还原的潜力进行了描述,我们实验室也一直在积极参与其中。FMD是一种“一体化”酶,在两个非常不同的金属辅因子处催化一个氧化还原活性转化与一个氧化还原中性转化偶联,在那里形成新的C-H和C-N键。首先,总结了由放能的CO还原与MFR上的吸能甲酸盐缩合组成的整个反应的原理。然后,本综述揭示了活性位点的分子细节,并概述了每种催化机制。它还描述了为CO还原提供电子的模块的天然多功能性,并将其扩展到使用人工系统如电极的可能性。最后展望了FMD的机制如何应用于生产基于CO的化学中间体以合成有机分子。实际上,通过其生化特性,该酶为CO电还原生成甲酸盐和甲酰胺衍生物等分子提供了机会,这些都是合成有机化合物的中间体。从这些生物系统中获得的化学知识的转移将提供连贯的模型,从而可以在合成生物学和生物启发的合成化学领域进一步发展,以将大规模的CO转化为化学合成的构建块。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7e/11656701/70ecde33f9dc/ar4c00623_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验