Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Front Immunol. 2024 Oct 7;15:1452097. doi: 10.3389/fimmu.2024.1452097. eCollection 2024.
Despite advances in neuro-oncology, treatments of glioma and tools for predicting the outcome of patients remain limited. The objective of this research is to construct a prognostic model for glioma using the Homologous Recombination Deficiency (HRD) score and validate its predictive capability for glioma.
We consolidated glioma datasets from TCGA, various cancer types for pan-cancer HRD analysis, and two additional glioma RNAseq datasets from GEO and CGGA databases. HRD scores, mutation data, and other genomic indices were calculated. Using machine learning algorithms, we identified signature genes and constructed an HRD-related prognostic risk model. The model's performance was validated across multiple cohorts. We also assessed immune infiltration and conducted molecular docking to identify potential therapeutic agents.
Our analysis established a correlation between higher HRD scores and genomic instability in gliomas. The model, based on machine learning algorithms, identified seven key genes, significantly predicting patient prognosis. Moreover, the HRD score prognostic model surpassed other models in terms of prediction efficacy across different cancers. Differential immune cell infiltration patterns were observed between HRD risk groups, with potential implications for immunotherapy. Molecular docking highlighted several compounds, notably Panobinostat, as promising for high-risk patients.
The prognostic model based on the HRD score threshold and associated genes in glioma offers new insights into the genomic and immunological landscapes, potentially guiding therapeutic strategies. The differential immune profiles associated with HRD-risk groups could inform immunotherapeutic interventions, with our findings paving the way for personalized medicine in glioma treatment.
尽管神经肿瘤学取得了进展,但胶质母细胞瘤的治疗方法和预测患者预后的工具仍然有限。本研究的目的是利用同源重组缺陷(HRD)评分构建胶质母细胞瘤的预后模型,并验证其对胶质母细胞瘤的预测能力。
我们整合了来自 TCGA 的胶质母细胞瘤数据集、用于泛癌 HRD 分析的各种癌症类型的数据集,以及来自 GEO 和 CGGA 数据库的另外两个胶质母细胞瘤 RNAseq 数据集。计算了 HRD 评分、突变数据和其他基因组指标。我们使用机器学习算法确定了特征基因,并构建了与 HRD 相关的预后风险模型。该模型在多个队列中进行了验证。我们还评估了免疫浸润,并进行了分子对接以鉴定潜在的治疗药物。
我们的分析确定了 HRD 评分较高与胶质瘤基因组不稳定性之间的相关性。该模型基于机器学习算法,确定了七个关键基因,这些基因显著预测了患者的预后。此外,HRD 评分预后模型在不同癌症中的预测效果优于其他模型。在 HRD 风险组之间观察到不同的免疫细胞浸润模式,这可能对免疫治疗有影响。分子对接突出了几种化合物,尤其是 Panobinostat,作为高危患者的潜在治疗药物。
基于 HRD 评分阈值和胶质母细胞瘤相关基因的预后模型为基因组和免疫景观提供了新的见解,可能为治疗策略提供指导。与 HRD 风险组相关的不同免疫谱可能为免疫治疗干预提供信息,我们的研究结果为胶质母细胞瘤治疗中的个性化医学铺平了道路。