Suppr超能文献

皮肤微生物组与皮肤成像表型之间的隐藏联系。

Hidden Links Between Skin Microbiome and Skin Imaging Phenome.

机构信息

College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Genomics Proteomics Bioinformatics. 2024 Oct 15;22(4). doi: 10.1093/gpbjnl/qzae040.

Abstract

Despite the skin microbiome has been linked to skin health and diseases, its role in modulating human skin appearance remains understudied. Using a total of 1244 face imaging phenomes and 246 cheek metagenomes, we first established three skin age indices by machine learning, including skin phenotype age (SPA), skin microbiota age (SMA), and skin integration age (SIA) as surrogates of phenotypic aging, microbial aging, and their combination, respectively. Moreover, we found that besides aging and gender as intrinsic factors, skin microbiome might also play a role in shaping skin imaging phenotypes (SIPs). Skin taxonomic and functional α diversity was positively linked to melanin, pore, pigment, and ultraviolet spot levels, but negatively linked to sebum, lightening, and porphyrin levels. Furthermore, certain species were correlated with specific SIPs, such as sebum and lightening levels negatively correlated with Corynebacterium matruchotii, Staphylococcus capitis, and Streptococcus sanguinis. Notably, we demonstrated skin microbial potential in predicting SIPs, among which the lightening level presented the least error of 1.8%. Lastly, we provided a reservoir of potential mechanisms through which skin microbiome adjusted the SIPs, including the modulation of pore, wrinkle, and sebum levels by cobalamin and heme synthesis pathways, predominantly driven by Cutibacterium acnes. This pioneering study unveils the paradigm for the hidden links between skin microbiome and skin imaging phenome, providing novel insights into how skin microbiome shapes skin appearance and its healthy aging.

摘要

尽管皮肤微生物组与皮肤健康和疾病有关,但它在调节人类皮肤外观方面的作用仍未得到充分研究。本研究使用了总共 1244 个面部成像表型和 246 个脸颊宏基因组,通过机器学习首次建立了三个皮肤年龄指数,包括皮肤表型年龄(SPA)、皮肤微生物组年龄(SMA)和皮肤综合年龄(SIA),分别作为表型老化、微生物老化及其组合的替代指标。此外,我们发现除了衰老和性别等内在因素外,皮肤微生物组可能在塑造皮肤成像表型(SIP)方面也发挥了作用。皮肤分类和功能α多样性与黑色素、毛孔、色素和紫外线斑点水平呈正相关,与皮脂、美白和卟啉水平呈负相关。此外,某些物种与特定的 SIP 相关,例如皮脂和美白水平与 Corynebacterium matruchotii、Staphylococcus capitis 和 Streptococcus sanguinis 呈负相关。值得注意的是,我们展示了皮肤微生物组在预测 SIP 方面的潜力,其中美白水平的预测误差最小,为 1.8%。最后,我们提供了一个潜在机制的储存库,通过这些机制,皮肤微生物组可以调节 SIP,包括钴胺素和血红素合成途径调节毛孔、皱纹和皮脂水平,主要由 Cutibacterium acnes 驱动。这项开创性的研究揭示了皮肤微生物组与皮肤成像表型之间隐藏联系的范例,为皮肤微生物组如何塑造皮肤外观及其健康衰老提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7459/11849492/5f69f6cc1a06/qzae040f5.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验