Vas Nazleen V, Sundari Shantha K, Jeyachandran Sivakamavalli
Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND.
Cureus. 2024 Sep 21;16(9):e69876. doi: 10.7759/cureus.69876. eCollection 2024 Sep.
: The environmental hazards posed by microplastics have drawn considerable concern due to their buildup in ecosystems. Microplastics accumulate in human saliva, skin, and hair. Developing effective technology for managing and degrading microplastics remains a substantial challenge. In a concerted attempt to save the ecology, this study explores the photocatalytic breakdown of common microplastics like polystyrene (PS) microspheres and polyethylene (PE) using green-synthesized zinc oxide nanoparticles (ZnO NPs) under UV light exposure. : To synthesize and characterize zinc oxide nanoparticles prepared using the extract of the leaves of and qualitatively assess the photocatalytic degradation potential of the nanoparticles under light microscopy. : A fresh extract of leaves was used as a reducing agent to synthesize zinc oxide nanoparticles. Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD) analysis, UV-Vis spectra analysis, and scanning electron microscopy (SEM) analysis were performed to characterize the nanoparticles. Microplastics were isolated from the saliva of 50 healthy patients and were purified and filtered. In a six-well microtiter plate, 0.5 μg of varying concentrations of nanoparticles were added. After fixing with 15% formaldehyde, microplastics were subjected to UV irradiation for 2 hours with different concentrations of ZnO nanoparticles (25, 50, 75, and 100 µg). Custom photoreactors activated the photocatalysts to degrade the microplastic pollutants. The six-well microtiter plate was viewed under 40x magnification in a light microscope to observe microplastic morphology after 24 hours of degradation. : The FTIR spectrum showed distinct peaks at 890.51 cm⁻¹, indicating the involvement of C-N in-plane vibrations of amino acids. XRD analysis revealed three distinct diffraction peaks at 31.68°, 34.39°, and 36.33°, corresponding to the hexagonal wurtzite structure of ZnO nanoparticles. The synthesized ZnO nanoparticles ranged from 50 to 90 nm in size, viewed at 100x magnification on SEM. The highest degradation of microplastics was observed at a ZnO NP concentration of 100 µL, with the ZnO NPs 50-90 nm in size. : Zinc oxide nanoparticles synthesized using leaf extract effectively degrade microplastics, with the highest degradation observed at a 100 µL concentration of ZnO nanoparticles and optimal degradation occurring at a concentration of 75 µL.
微塑料对环境造成的危害因其在生态系统中的积累而备受关注。微塑料会在人类唾液、皮肤和头发中累积。开发有效管理和降解微塑料的技术仍然是一项重大挑战。为了共同努力拯救生态,本研究探索了在紫外线照射下,使用绿色合成的氧化锌纳米颗粒(ZnO NPs)对聚苯乙烯(PS)微球和聚乙烯(PE)等常见微塑料进行光催化分解。
为了合成和表征使用[植物名称]叶片提取物制备的氧化锌纳米颗粒,并在光学显微镜下定性评估纳米颗粒的光催化降解潜力。
使用新鲜的[植物名称]叶片提取物作为还原剂来合成氧化锌纳米颗粒。进行了傅里叶变换红外(FTIR)分析、X射线衍射(XRD)分析、紫外可见光谱分析和扫描电子显微镜(SEM)分析来表征纳米颗粒。从50名健康患者的唾液中分离出微塑料,并进行纯化和过滤。在一个六孔微量滴定板中,加入0.5μg不同浓度的纳米颗粒。用15%甲醛固定后,微塑料在不同浓度(25、50、75和100μg)的ZnO纳米颗粒存在下接受紫外线照射2小时。定制的光反应器激活光催化剂以降解微塑料污染物。在光学显微镜下以40倍放大倍数观察六孔微量滴定板,以观察降解24小时后的微塑料形态。
FTIR光谱在890.51 cm⁻¹处显示出明显的峰,表明氨基酸的C-N面内振动参与其中。XRD分析在31.68°、34.39°和36.33°处显示出三个明显的衍射峰,对应于ZnO纳米颗粒的六方纤锌矿结构。在SEM下以100倍放大倍数观察,合成的ZnO纳米颗粒尺寸在50至90nm之间。在ZnO NP浓度为100µL时观察到微塑料的最高降解率,此时ZnO NPs尺寸为50 - 90nm。
使用[植物名称]叶片提取物合成的氧化锌纳米颗粒能有效降解微塑料,在ZnO纳米颗粒浓度为100µL时观察到最高降解率,在浓度为75µL时发生最佳降解。