Jayappa Manasa Dogganal, Ramaiah Chandrashekar Konambi, Kumar Masineni Allapuramaiah Pavan, Suresh Doddavenkatanna, Prabhu Ashwini, Devasya Rekha Punchappady, Sheikh Sana
Department of Applied Botany, Mangalore University, Mangalagangothri, Mangalore, Karnataka 574199 India.
Department of Studies in Botany, Davangere University, Shivagangothri, Davangere, Karnataka 577007 India.
Appl Nanosci. 2020;10(8):3057-3074. doi: 10.1007/s13204-020-01382-2. Epub 2020 Apr 9.
Biosynthesis of zinc oxide nanoparticles (ZnO-NPs) was achieved by utilizing the reducing and capping potential of leaf, stem and callus aqueous extracts of The bioreduced ZnO-NPs were characterized using powder X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis spectroscopy), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) techniques. UV-visible spectra of ZnO-NPs showed a strong absorption peak at 370, 376 and 373 nm corresponding to the band gap energy of 3.33, 3.27 and 3.30 eV for ZnO-NPs obtained from leaf (L-ZnO-NP), stem (S-ZnO-NP) and callus (C-ZnO-NP) aqueous extracts, respectively. XRD analysis confirmed the formation of hexagonal wurtzite structures having an average grain size between 5 and 20 nm in diameter. FTIR spectra revealed the presence of stretching vibrations of -O-H, C-H, C-N, C = O groups involved in reduction and stabilization of nanoparticles. SEM images recognize the presence of spongy, spherical, porous agglomerated nanoparticles. DLS analysis and zeta potential values validated the stability of ZnO-NPs. The present investigation puts light on the photocatalytic activity and biological (antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancerous) applications of ZnO-NPs. The current study is an attempt to describe an effective, simple and eco-friendly method of ZnO-NP synthesis and to evaluate its potential for various industrial and medical applications.
通过利用某植物叶片、茎和愈伤组织水提取物的还原和封端能力实现了氧化锌纳米颗粒(ZnO-NPs)的生物合成。使用粉末X射线衍射(XRD)、紫外可见光谱(UV-Vis光谱)、扫描电子显微镜(SEM)、能量色散光谱(EDS)、傅里叶变换红外光谱(FTIR)和动态光散射(DLS)技术对生物还原的ZnO-NPs进行了表征。ZnO-NPs的紫外可见光谱在370、376和373nm处显示出强吸收峰,分别对应于从叶片(L-ZnO-NP)、茎(S-ZnO-NP)和愈伤组织(C-ZnO-NP)水提取物中获得的ZnO-NPs的带隙能量3.33、3.27和3.30eV。XRD分析证实形成了直径平均在5到20nm之间的六方纤锌矿结构。FTIR光谱揭示了参与纳米颗粒还原和稳定的-O-H、C-H、C-N、C=O基团的伸缩振动的存在。SEM图像识别出存在海绵状、球形、多孔团聚的纳米颗粒。DLS分析和zeta电位值验证了ZnO-NPs的稳定性。本研究揭示了ZnO-NPs的光催化活性和生物(抗氧化、抗炎、抗糖尿病、抗菌、抗癌)应用。当前的研究试图描述一种有效、简单且环保的ZnO-NP合成方法,并评估其在各种工业和医学应用中的潜力。