Suppr超能文献

通过动态机械刺激增强外源mRNA的细胞质表达

Enhancing Cytoplasmic Expression of Exogenous mRNA Through Dynamic Mechanical Stimulation.

作者信息

Chen Jiawen, Patel Aneri, Mir Mohammad, Hudock Maria R, Pinezich Meghan R, Guenthart Brandon, Bacchetta Matthew, Vunjak-Novakovic Gordana, Kim Jinho

机构信息

Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.

Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA.

出版信息

Adv Healthc Mater. 2025 Jan;14(1):e2401918. doi: 10.1002/adhm.202401918. Epub 2024 Oct 23.

Abstract

Ionizable lipid nanoparticles (LNPs) are pivotal in combating COVID-19, and numerous preclinical and clinical studies have highlighted their potential in nucleic acid-based therapies and vaccines. However, the effectiveness of endosomal escape for the nucleic acid cargos encapsulated in LNPs is still low, leading to suboptimal treatment outcomes and side effects. Hence, improving endosomal escape is crucial for enhancing the efficacy of nucleic acid delivery using LNPs. Here, a mechanical oscillation (frequency: 65 Hz) is utilized to prompt the LNP-mediated endosomal escape. The results reveal this mechanical oscillation can induce the combination and fusion between LNPs with opposite surface charges, enhance endosomal escape of mRNA, and increase the transfection efficiency of mRNA. Additionally, cell viability remains high at 99.3% after treatment with oscillation, which is comparable to that of untreated cells. Furthermore, there is no obvious damage to mitochondrial membrane potential and Golgi apparatus integrity. Thus, this work presents a user-friendly and safe approach to enhancing endosomal escape of mRNA and boosting gene expression. As a result, this work can be potentially utilized in both research and clinical fields to facilitate LNP-based delivery by enabling more effective release of LNP-encapsulated cargos from endosomes.

摘要

可电离脂质纳米颗粒(LNPs)在抗击新冠病毒中起着关键作用,众多临床前和临床研究都凸显了它们在基于核酸的治疗和疫苗方面的潜力。然而,包裹在LNPs中的核酸货物的内体逃逸效率仍然很低,导致治疗效果欠佳和出现副作用。因此,提高内体逃逸对于增强使用LNPs进行核酸递送的疗效至关重要。在此,利用机械振荡(频率:65赫兹)来促进LNP介导的内体逃逸。结果表明,这种机械振荡可诱导具有相反表面电荷的LNPs之间的结合与融合,增强mRNA的内体逃逸,并提高mRNA的转染效率。此外,振荡处理后细胞活力仍高达99.3%,与未处理的细胞相当。而且,线粒体膜电位和高尔基体完整性没有明显损伤。因此,这项工作提出了一种方便且安全的方法来增强mRNA的内体逃逸并促进基因表达。其结果是,这项工作在研究和临床领域都具有潜在应用价值,通过使LNPs包裹的货物更有效地从内体中释放,来促进基于LNP的递送。

相似文献

5
Chemistry of Lipid Nanoparticles for RNA Delivery.脂质纳米颗粒的 RNA 递送化学。
Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1.
7
Tetrahydropyrimidine Ionizable Lipids for Efficient mRNA Delivery.可离子化的四氢嘧啶脂质用于高效 mRNA 递送。
ACS Nano. 2024 Oct 22;18(42):29045-29058. doi: 10.1021/acsnano.4c10154. Epub 2024 Oct 11.
10
Nucleic Acid-Loaded Lipid Nanoparticle Interactions with Model Endosomal Membranes.核酸负载脂质纳米颗粒与模型内体膜的相互作用。
ACS Appl Mater Interfaces. 2022 Jul 6;14(26):30371-30384. doi: 10.1021/acsami.2c06065. Epub 2022 Jun 27.

本文引用的文献

6
The landscape of mRNA nanomedicine.信使核糖核酸纳米药物的前景。
Nat Med. 2022 Nov;28(11):2273-2287. doi: 10.1038/s41591-022-02061-1. Epub 2022 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验