Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India.
Sci Rep. 2024 Oct 23;14(1):24985. doi: 10.1038/s41598-024-75915-y.
In light of the ongoing battle against COVID-19, while the pandemic may eventually subside, sporadic cases may still emerge, underscoring the need for accurate detection from radiological images. However, the limited explainability of current deep learning models restricts clinician acceptance. To address this issue, our research integrates multiple CNN models with explainable AI techniques, ensuring model interpretability before ensemble construction. Our approach enhances both accuracy and interpretability by evaluating advanced CNN models on the largest publicly available X-ray dataset, COVIDx CXR-3, which includes 29,986 images, and the CT scan dataset for SARS-CoV-2 from Kaggle, which includes a total of 2,482 images. We also employed additional public datasets for cross-dataset evaluation, ensuring a thorough assessment of model performance across various imaging conditions. By leveraging methods including LIME, SHAP, Grad-CAM, and Grad-CAM++, we provide transparent insights into model decisions. Our ensemble model, which includes DenseNet169, ResNet50, and VGG16, demonstrates strong performance. For the X-ray image dataset, sensitivity, specificity, accuracy, F1-score, and AUC are recorded at 99.00%, 99.00%, 99.00%, 0.99, and 0.99, respectively. For the CT image dataset, these metrics are 96.18%, 96.18%, 96.18%, 0.9618, and 0.96, respectively. Our methodology bridges the gap between precision and interpretability in clinical settings by combining model diversity with explainability, promising enhanced disease diagnosis and greater clinician acceptance.
鉴于当前正在与 COVID-19 进行斗争,虽然大流行可能最终会消退,但仍可能会出现零星病例,这突显出从放射图像中进行准确检测的必要性。然而,当前深度学习模型的可解释性有限,限制了临床医生的接受程度。为了解决这个问题,我们的研究将多个 CNN 模型与可解释人工智能技术相结合,在进行集成构建之前确保模型的可解释性。我们的方法通过在最大的公开 X 射线数据集 COVIDx CXR-3 上评估先进的 CNN 模型,并在 Kaggle 上的 SARS-CoV-2 CT 扫描数据集上进行评估,总共包含 29986 张图像,以及总共包含 2482 张图像的 Kaggle 上的 SARS-CoV-2 CT 扫描数据集,提高了准确性和可解释性。我们还使用了其他公共数据集进行跨数据集评估,以确保在各种成像条件下全面评估模型性能。通过利用 LIME、SHAP、Grad-CAM 和 Grad-CAM++等方法,我们提供了对模型决策的透明见解。我们的集成模型包括 DenseNet169、ResNet50 和 VGG16,表现出强大的性能。对于 X 射线图像数据集,灵敏度、特异性、准确性、F1 分数和 AUC 分别记录为 99.00%、99.00%、99.00%、0.99 和 0.99。对于 CT 图像数据集,这些指标分别为 96.18%、96.18%、96.18%、0.9618 和 0.96。我们的方法通过结合模型多样性和可解释性,弥合了临床环境中精度和可解释性之间的差距,有望提高疾病诊断的准确性,并提高临床医生的接受程度。