Computer Science, University of Saskatchewan, S7N5C9, Saskatoon, Canada.
Computer Science, University of Victoria, V8W282, Victoria, Canada.
Sci Rep. 2024 Oct 23;14(1):25099. doi: 10.1038/s41598-024-76513-8.
Microbes are pervasive and their interaction with each other and the environment can impact fields as diverse as health and agriculture. While network inference and related algorithms that use abundance data from pyrosequencing can infer microbial interaction networks, the ambiguity surrounding the actual underlying networks hampers the validation of these algorithms. This study introduces a generative model to synthesize both the underlying interactive network and observable abundance data, serving as a test bed for the existing and future network inference algorithms. We tested our generative model with four typical network inference algorithms; our results suggest that none of these algorithms demonstrate adequate accuracy for inferring ecologies of non-commensalistic species, either mutualistic or competitive. We further explored the potential for predictability by combining existing algorithms with an oracle algorithm built by fusing the results of several existing algorithms. The oracle algorithm reveals promising improvements in predictability, although it falls short when applied to networks characterized by dense interspecies taxa interactions. Our work underscores the need for the continued development and validation of algorithms to unravel the intricacies of microbial interaction networks.
微生物无处不在,它们之间的相互作用以及与环境的相互作用可以影响到健康和农业等各个领域。虽然基于 pyrosequencing 丰度数据的网络推断和相关算法可以推断微生物相互作用网络,但实际潜在网络的模糊性阻碍了这些算法的验证。本研究引入了一种生成模型来综合潜在的交互网络和可观察的丰度数据,为现有和未来的网络推断算法提供了一个测试平台。我们使用四种典型的网络推断算法对我们的生成模型进行了测试;我们的结果表明,这些算法都没有足够的准确性来推断非共生物种的生态,无论是互利共生还是竞争关系。我们进一步通过将现有算法与通过融合几个现有算法的结果构建的oracle 算法相结合,来探索可预测性的潜力。oracle 算法在可预测性方面显示出了有希望的改进,尽管在应用于具有密集种间分类群相互作用的网络时,它还有所欠缺。我们的工作强调了需要继续开发和验证算法,以揭示微生物相互作用网络的复杂性。