Suppr超能文献

在使用图卷积网络和多层感知器的物联网增强系统中的个性化电影推荐

Personalized movie recommendation in IoT-enhanced systems using graph convolutional network and multi-layer perceptron.

作者信息

Ye Sheng, Huang Qian, Xia Haibin

机构信息

Faculty of Information Technology, Concord University College Fujian Normal University, Fuzhou, China.

College of Art and Design, Guangdong Eco-Engineering Polytechnic, Guangzhou, China.

出版信息

Sci Rep. 2024 Oct 25;14(1):25268. doi: 10.1038/s41598-024-76587-4.

Abstract

Exploring the optimization of communication strategies for animation films in the context of cross-cultural communication, this research integrates the Internet of Things (IoT) and convolutional networks. The research constructs a collaborative filtering (CF) movie recommendation model based on a graph convolutional neural network (GCN) and investigates its application in cross-cultural communication. The fusion of IoT and convolutional networks in movie communication is also analyzed, and the effectiveness of the proposed GCN-CF model is validated through comparative experiments. The results indicate that, compared to other models, the GCN-CF model achieves the lowest Root Mean Square Error (RMSE) on the MovieLens 100 K and MovieLens 1 M datasets, with values of 0.8762 and 0.8275, respectively. Compared to traditional models, the GCN-CF model exhibits significantly superior performance in terms of RMSE, with reductions ranging from 0.6 to 5.2%, highlighting its heightened detection accuracy and overall performance. Moreover, the performance of the GCN-CF model is enhanced after introducing attention mechanisms and auxiliary information on both datasets, showing an improvement of 0.4% compared to the scenario without these additions. This data demonstrates the effectiveness of attention mechanisms and auxiliary information. Finally, the research presents an animation film communication strategy based on IoT and convolutional networks, offering novel insights for film production and communication, along with positive implications for cultural exchange and the advancement of the global media industry.

摘要

本研究在跨文化传播背景下探索动画电影传播策略的优化,将物联网(IoT)与卷积网络相结合。该研究构建了基于图卷积神经网络(GCN)的协同过滤(CF)电影推荐模型,并研究其在跨文化传播中的应用。同时分析了物联网与卷积网络在电影传播中的融合情况,并通过对比实验验证了所提GCN-CF模型的有效性。结果表明,与其他模型相比,GCN-CF模型在MovieLens 100K和MovieLens 1M数据集上实现了最低的均方根误差(RMSE),分别为0.8762和0.8275。与传统模型相比,GCN-CF模型在RMSE方面表现出显著优越的性能,降低幅度在0.6%至5.2%之间,突出了其更高的检测精度和整体性能。此外,在两个数据集上引入注意力机制和辅助信息后,GCN-CF模型的性能得到增强,与未添加这些信息的情况相比提高了0.4%。这些数据证明了注意力机制和辅助信息的有效性。最后,该研究提出了一种基于物联网和卷积网络的动画电影传播策略,为电影制作和传播提供了新的见解,对文化交流和全球媒体行业的发展具有积极意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验