Suppr超能文献

利用定制的卷积神经网络结合可解释人工智能进行脑肿瘤预测。

Utilizing customized CNN for brain tumor prediction with explainable AI.

作者信息

Nazir Md Imran, Akter Afsana, Hussen Wadud Md Anwar, Uddin Md Ashraf

机构信息

Department of Computer Science & Engineering, Bangladesh University of Business & Technology, Dhaka, Bangladesh.

Department of Computer Science & Engineering, Sunamgonj Science and Technology University, Sunamganj, 3000, Bangladesh.

出版信息

Heliyon. 2024 Oct 9;10(20):e38997. doi: 10.1016/j.heliyon.2024.e38997. eCollection 2024 Oct 30.

Abstract

Timely diagnosis of brain tumors using MRI and its potential impact on patient survival are critical issues addressed in this study. Traditional DL models often lack transparency, leading to skepticism among medical experts owing to their "black box" nature. This study addresses this gap by presenting an innovative approach for brain tumor detection. It utilizes a customized Convolutional Neural Network (CNN) model empowered by three advanced explainable artificial intelligence (XAI) techniques: Shapley Additive Explana-tions (SHAP), Local Interpretable Model-agnostic Explanations (LIME), and Gradient-weighted Class Activation Mapping (Grad-CAM). The study utilized the BR35H dataset, which includes 3060 brain MRI images encompassing both tumorous and non-tumorous cases. The proposed model achieved a remarkable training accuracy of 100 % and validation accuracy of 98.67 %. Precision, recall, and F1 score metrics demonstrated exceptional performance at 98.50 %, confirming the accuracy of the model in tumor detection. Detailed result analysis, including a confusion matrix, comparison with existing models, and generalizability tests on other datasets, establishes the superiority of the proposed approach and sets a new benchmark for accuracy. By integrating a customized CNN model with XAI techniques, this research enhances trust in AI-driven medical diagnostics and offers a promising pathway for early tumor detection and potentially life-saving interventions.

摘要

本研究探讨了利用磁共振成像(MRI)及时诊断脑肿瘤及其对患者生存率的潜在影响等关键问题。传统的深度学习(DL)模型往往缺乏透明度,因其“黑箱”性质而导致医学专家产生怀疑。本研究通过提出一种创新的脑肿瘤检测方法来填补这一空白。它利用了一个定制的卷积神经网络(CNN)模型,该模型由三种先进的可解释人工智能(XAI)技术赋能:夏普利值加法解释(SHAP)、局部可解释模型无关解释(LIME)和梯度加权类激活映射(Grad-CAM)。该研究使用了BR35H数据集,其中包括3060张脑MRI图像,涵盖肿瘤和非肿瘤病例。所提出的模型在训练中达到了100%的显著准确率,验证准确率为98.67%。精确率、召回率和F1分数指标在98.50%时表现出色,证实了该模型在肿瘤检测中的准确性。详细的结果分析,包括混淆矩阵、与现有模型的比较以及对其他数据集的泛化测试,确立了所提方法的优越性,并为准确性设定了新的基准。通过将定制的CNN模型与XAI技术相结合,本研究增强了对人工智能驱动的医学诊断的信任,并为早期肿瘤检测和潜在的挽救生命的干预措施提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5e8/11497403/6fc1dfef71e8/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验