Tene Talia, Bonilla García Nataly, Coello-Fiallos Diana, Borja Myrian, Vacacela Gomez Cristian
Department of Chemistry, Universidad Técnica Particular de Loja, Loja, Ecuador.
Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador.
Front Med (Lausanne). 2024 Oct 10;11:1384799. doi: 10.3389/fmed.2024.1384799. eCollection 2024.
This systematic review aims to analyze and synthesize the current state of research on the role of immersive technologies, specifically augmented reality (AR), virtual reality (VR), and mixed reality (MR), in medical physics and radiation physics education. The primary focus is to evaluate their impact on learning outcomes, performance, and engagement across various educational contexts.
We conduct a comprehensive search of four major databases: Scopus, Web of Science, PubMed, and IEEE Xplore, covering the period from 2012 to 2023. A total of 316 articles are initially identified. After removing duplicates and screening for relevance based on titles and abstracts, 107 articles are selected for full-text review. Finally, 37 articles met the inclusion criteria and are included in the analysis. The review follows the PRISMA guidelines and utilizes the PICOS framework to structure the research question.
Data extraction focuses on key variables such as the type of immersive technology used, educational context, study design, participant demographics, and measured outcomes. The studies are analyzed for their reported effects on learning outcomes, performance, and engagement.
The review found that immersive technologies significantly enhance learning outcomes and engagement. Specifically, 36.4% of the studies reported increased engagement, while 63.6% of studies focusing on practical skills noted performance improvements. The use of AR, VR, and MR showed broad applicability across different educational levels, from undergraduate courses to professional training programs.
Immersive technologies have considerable potential to transform medical and radiation physics. They enhance student engagement, improve learning outcomes, and boost performance in practical skills. Nevertheless, future research should focus on standardizing methodologies, expanding participant demographics, and exploring long-term impacts on skill retention and clinical practice. This review provides a valuable resource for guiding future research and implementing innovative educational strategies in the dynamic fields of medical physics and radiation physics.
本系统综述旨在分析和综合沉浸式技术,特别是增强现实(AR)、虚拟现实(VR)和混合现实(MR)在医学物理和放射物理教育中作用的当前研究状况。主要重点是评估它们在各种教育背景下对学习成果、表现和参与度的影响。
我们对四个主要数据库进行了全面检索:Scopus、科学网、PubMed和IEEE Xplore,涵盖2012年至2023年期间。最初共识别出316篇文章。在去除重复项并根据标题和摘要筛选相关性后,选择107篇文章进行全文审查。最后,37篇文章符合纳入标准并纳入分析。该综述遵循PRISMA指南,并利用PICOS框架构建研究问题。
数据提取侧重于关键变量,如所使用的沉浸式技术类型、教育背景、研究设计、参与者人口统计学特征和测量结果。分析这些研究报告的对学习成果、表现和参与度的影响。
该综述发现,沉浸式技术显著提高了学习成果和参与度。具体而言,36.4%的研究报告参与度有所提高,而专注于实践技能的研究中有63.6%指出表现有所改善。AR、VR和MR的使用在从本科课程到专业培训项目的不同教育水平上显示出广泛的适用性。
沉浸式技术在变革医学和放射物理方面具有巨大潜力。它们提高了学生的参与度,改善了学习成果,并提升了实践技能表现。然而,未来的研究应侧重于使方法标准化、扩大参与者人口统计学范围,并探索对技能保留和临床实践的长期影响。本综述为指导未来研究以及在医学物理和放射物理的动态领域实施创新教育策略提供了宝贵资源。