Department of Cardiovascular and Thoracic Surgery, UT Southwestern Medical Center, Dallas, Texas, United States.
Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, United States.
Am J Physiol Heart Circ Physiol. 2024 Dec 1;327(6):H1327-H1342. doi: 10.1152/ajpheart.00539.2024. Epub 2024 Oct 25.
Diabetes mellitus (DM) is characterized by chronic hyperglycemia, and despite intensive glycemic control, the risk of heart failure in patients with diabetes remains high. Diabetes-induced heart failure (DHF) presents a unique metabolic challenge, driven by significant alterations in cardiac substrate metabolism, including increased reliance on fatty acid oxidation, reduced glucose utilization, and impaired mitochondrial function. These metabolic alterations lead to oxidative stress, lipotoxicity, and energy deficits, contributing to the progression of heart failure. Emerging research has identified novel mechanisms involved in the metabolic remodeling of diabetic hearts, such as autophagy dysregulation, epigenetic modifications, polyamine regulation, and branched-chain amino acid (BCAA) metabolism. These processes exacerbate mitochondrial dysfunction and metabolic inflexibility, further impairing cardiac function. Therapeutic interventions targeting these pathways-such as enhancing glucose oxidation, modulating fatty acid metabolism, and optimizing ketone body utilization-show promise in restoring metabolic homeostasis and improving cardiac outcomes. This review explores the key molecular mechanisms driving metabolic remodeling in diabetic hearts, highlights advanced methodologies, and presents the latest therapeutic strategies for mitigating the progression of DHF. Understanding these emerging pathways offers new opportunities to develop targeted therapies that address the root metabolic causes of heart failure in diabetes.
糖尿病(DM)的特征是慢性高血糖,尽管进行了强化血糖控制,但糖尿病患者发生心力衰竭的风险仍然很高。糖尿病引起的心力衰竭(DHF)表现出独特的代谢挑战,这是由心脏底物代谢的显著改变驱动的,包括增加对脂肪酸氧化的依赖、减少葡萄糖利用和受损的线粒体功能。这些代谢改变导致氧化应激、脂毒性和能量不足,导致心力衰竭的进展。新兴研究已经确定了糖尿病心脏代谢重塑涉及的新机制,如自噬失调、表观遗传修饰、多胺调节和支链氨基酸(BCAA)代谢。这些过程加剧了线粒体功能障碍和代谢灵活性的降低,进一步损害了心脏功能。针对这些途径的治疗干预措施——如增强葡萄糖氧化、调节脂肪酸代谢和优化酮体利用——显示出恢复代谢平衡和改善心脏结局的潜力。本综述探讨了驱动糖尿病心脏代谢重塑的关键分子机制,强调了先进的方法,并介绍了减轻 DHF 进展的最新治疗策略。了解这些新兴途径为开发针对糖尿病心力衰竭根本代谢原因的靶向治疗提供了新的机会。