Suppr超能文献

结合定量蛋白质组学和相互作用组学以更深入洞察人类细胞系之间的分子差异

Combining Quantitative Proteomics and Interactomics for a Deeper Insight into Molecular Differences between Human Cell Lines.

作者信息

Bakhtina Anna A, Wippel Helisa H, Chavez Juan D, Bruce James E

机构信息

Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States.

出版信息

J Proteome Res. 2024 Dec 6;23(12):5360-5371. doi: 10.1021/acs.jproteome.4c00503. Epub 2024 Oct 25.

Abstract

In modern biomedical research, cultivable cell lines are an indispensable tool, and the selection of cell lines that exhibit specific functional profiles is often critical to success. Cellular functional pathways have evolved through the selection of protein intra- and intermolecular interactions collectively referred to as the interactome. In the present work, quantitative in vivo protein cross-linking and mass spectrometry were used to probe large-scale protein interactome differences among three commonly employed human cell lines, namely, HEK293, MCF-7, and HeLa cells. These data illustrated highly reproducible quantitative interactome levels with values larger than 0.8 for all biological replicates. Proteome abundance levels were also measured using data-independent acquisition quantitative proteomics methods. Combining quantitative interactome and proteome information allowed the visualization of cell type-specific interactome changes mediated by proteome level adaptations and independently regulated interactome changes to gain deeper insight into possible drivers of these changes. Among the largest detected alterations in protein interactions and conformations are changes in cytoskeletal proteins, RNA-binding proteins, chromatin remodeling complexes, mitochondrial proteins, and others. Overall, these data demonstrate the utility and reproducibility of quantitative cross-linking to study system-level interactome variations. Moreover, these results illustrate how combined quantitative interactomics and proteomics can provide unique insight into cellular functional landscapes.

摘要

在现代生物医学研究中,可培养细胞系是一种不可或缺的工具,选择具有特定功能特征的细胞系往往对研究成功至关重要。细胞功能通路是通过选择统称为相互作用组的蛋白质分子内和分子间相互作用而进化而来的。在本研究中,采用体内蛋白质定量交联和质谱技术来探究三种常用人类细胞系(即HEK293、MCF-7和HeLa细胞)之间大规模蛋白质相互作用组的差异。这些数据表明,所有生物学重复的定量相互作用组水平具有高度可重复性,相关系数大于0.8。蛋白质组丰度水平也使用数据非依赖采集定量蛋白质组学方法进行了测量。结合定量相互作用组和蛋白质组信息,可以可视化由蛋白质组水平适应性介导的细胞类型特异性相互作用组变化以及独立调节的相互作用组变化,从而更深入地了解这些变化的可能驱动因素。在检测到的蛋白质相互作用和构象的最大变化中,有细胞骨架蛋白、RNA结合蛋白、染色质重塑复合物、线粒体蛋白等的变化。总体而言,这些数据证明了定量交联在研究系统水平相互作用组变异方面的实用性和可重复性。此外,这些结果说明了联合定量相互作用组学和蛋白质组学如何能够为细胞功能景观提供独特的见解。

相似文献

5
Proteome-Scale Human Interactomics.蛋白质组规模的人类相互作用组学
Trends Biochem Sci. 2017 May;42(5):342-354. doi: 10.1016/j.tibs.2017.02.006. Epub 2017 Mar 8.
7
Tools for 3D Interactome Visualization.三维交互作用组可视化工具。
J Proteome Res. 2019 Feb 1;18(2):753-758. doi: 10.1021/acs.jproteome.8b00703. Epub 2018 Dec 18.
9
The social and structural architecture of the yeast protein interactome.酵母蛋白质相互作用组的社会和结构架构。
Nature. 2023 Dec;624(7990):192-200. doi: 10.1038/s41586-023-06739-5. Epub 2023 Nov 15.
10
Recent Advances in Mass Spectrometry-Based Protein Interactome Studies.基于质谱的蛋白质相互作用组研究的最新进展
Mol Cell Proteomics. 2025 Jan;24(1):100887. doi: 10.1016/j.mcpro.2024.100887. Epub 2024 Nov 27.

本文引用的文献

2
Structure of the ISW1a complex bound to the dinucleosome.与双核小体结合的ISW1a复合物的结构。
Nat Struct Mol Biol. 2024 Feb;31(2):266-274. doi: 10.1038/s41594-023-01174-6. Epub 2024 Jan 4.
4
Towards a structurally resolved human protein interaction network.构建具有结构解析的人类蛋白质相互作用网络
Nat Struct Mol Biol. 2023 Feb;30(2):216-225. doi: 10.1038/s41594-022-00910-8. Epub 2023 Jan 23.
6
Glyoxalase 1 as a Therapeutic Target in Cancer and Cancer Stem Cells.糖氧醛酸 1 作为癌症和癌症干细胞治疗靶点。
Mol Cells. 2022 Dec 31;45(12):869-876. doi: 10.14348/molcells.2022.0109. Epub 2022 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验