文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预测儿童和青少年孤独感的风险:一项机器学习研究。

Predicting the Risk of Loneliness in Children and Adolescents: A Machine Learning Study.

作者信息

Zhang Jie, Feng Xinyi, Wang Wenhe, Liu Shudan, Zhang Qin, Wu Di, Liu Qin

机构信息

Research Center for Medicine and Social Development, School of Public Health, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.

College of Medical Informatics, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.

出版信息

Behav Sci (Basel). 2024 Oct 15;14(10):947. doi: 10.3390/bs14100947.


DOI:10.3390/bs14100947
PMID:39457819
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11504542/
Abstract

BACKGROUND: Loneliness is increasingly emerging as a significant public health problem in children and adolescents. Predicting loneliness and finding its risk factors in children and adolescents is lacking and necessary, and would greatly help determine intervention actions. OBJECTIVE: This study aimed to find appropriate machine learning techniques to predict loneliness and its associated risk factors among schoolchildren. METHODS: The data were collected from an ongoing prospective puberty cohort that was established in Chongqing, Southwest China. This study used 822 subjects (46.84% boys, age range: 11-16) followed in 2019. Five models, (a) random forest, (b) extreme gradient boosting (XGBoost), (c) logistic regression, (d) neural network, and (e) support vector machine were applied to predict loneliness. A total of 39 indicators were collected and 28 predictors were finally included for prediction after data pre-processing, including demographic, parental relationship, mental health, pubertal development, behaviors, and environmental factors. Model performance was determined by accuracy and AUC. Additionally, random forest and XGBoost were applied to identify the important factors. The XGBoost algorithm with SHAP was also used to interpret the results of our ML model. RESULTS: All machine learning performed with favorable accuracy. Compared to random forest (AUC: 0.87 (95%CI: 0.80, 0.93)), logistic regression (AUC: 0.80 (95%CI: 0.70, 0.89)), neural network (AUC: 0.80 (95%CI: 0.71, 0.89)), and support vector machine (AUC: 0.79 (95%CI: 0.79, 0.89)), XGBoost algorithm had the highest AUC values 0.87 (95%CI: 0.80, 0.93) in the test set, although the difference was not significant between models. Peer communication, index of general affect, peer alienation, and internet addiction were the top four significant factors of loneliness in children and adolescents. CONCLUSIONS: The results of this study suggest that machine learning has considerable potential to predict loneliness in children. This may be valuable for the early identification and intervention of loneliness.

摘要

背景:孤独正日益成为儿童和青少年中一个重大的公共卫生问题。目前缺乏且有必要预测儿童和青少年的孤独感并找出其风险因素,这将极大地有助于确定干预措施。 目的:本研究旨在寻找合适的机器学习技术来预测学童的孤独感及其相关风险因素。 方法:数据来自中国西南部重庆正在进行的一项前瞻性青春期队列研究。本研究使用了2019年追踪的822名受试者(46.84%为男孩,年龄范围:11 - 16岁)。应用了五种模型,(a)随机森林,(b)极端梯度提升(XGBoost),(c)逻辑回归,(d)神经网络,以及(e)支持向量机来预测孤独感。总共收集了39项指标,经过数据预处理后最终纳入28个预测变量进行预测,包括人口统计学、亲子关系、心理健康、青春期发育、行为和环境因素。通过准确率和AUC来确定模型性能。此外,应用随机森林和XGBoost来识别重要因素。还使用了带有SHAP的XGBoost算法来解释我们机器学习模型的结果。 结果:所有机器学习的准确率都不错。与随机森林(AUC:0.87(95%CI:0.80,0.93))、逻辑回归(AUC:0.80(95%CI:0.70,0.89))、神经网络(AUC:0.80(95%CI:0.71,0.89))和支持向量机(AUC:0.79(95%CI:0.79,0.89))相比,XGBoost算法在测试集中的AUC值最高,为0.87(95%CI:0.80,0.93),尽管各模型之间差异不显著。同伴交流、总体情感指数、同伴疏离和网络成瘾是儿童和青少年孤独感的前四大重要因素。 结论:本研究结果表明,机器学习在预测儿童孤独感方面具有相当大的潜力。这对于孤独感的早期识别和干预可能具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/b55f647cb868/behavsci-14-00947-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/29109c96da80/behavsci-14-00947-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/1444cd06a293/behavsci-14-00947-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/807d976d9deb/behavsci-14-00947-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/c902db0e3417/behavsci-14-00947-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/b55f647cb868/behavsci-14-00947-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/29109c96da80/behavsci-14-00947-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/1444cd06a293/behavsci-14-00947-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/807d976d9deb/behavsci-14-00947-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/c902db0e3417/behavsci-14-00947-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b4/11504542/b55f647cb868/behavsci-14-00947-g005.jpg

相似文献

[1]
Predicting the Risk of Loneliness in Children and Adolescents: A Machine Learning Study.

Behav Sci (Basel). 2024-10-15

[2]
Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery.

Aging Clin Exp Res. 2023-11

[3]
Interpretable machine learning for allergic rhinitis prediction among preschool children in Urumqi, China.

Sci Rep. 2024-9-27

[4]
A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study.

J Med Internet Res. 2023-4-6

[5]
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-4

[6]
Predicting postoperative outcomes in lumbar spinal fusion: development of a machine learning model.

Spine J. 2024-2

[7]
The development and validation of a prognostic prediction modeling study in acute myocardial infarction patients after percutaneous coronary intervention: hemorrhea and major cardiovascular adverse events.

J Thorac Dis. 2024-9-30

[8]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

[9]
Predicting mental health problems in adolescence using machine learning techniques.

PLoS One. 2020-4-6

[10]
Utilizing machine learning algorithms for predicting risk factors for bone metastasis from right-sided colon carcinoma after complete mesocolic excision: a 10-year retrospective multicenter study.

Discov Oncol. 2024-9-19

本文引用的文献

[1]
Developing clinical prediction models: a step-by-step guide.

BMJ. 2024-9-3

[2]
The Effect of Peer Relationships on Adolescent Loneliness: The Role of Psychological Resilience and the OXTR Gene.

Psychol Res Behav Manag. 2024-6-22

[3]
Investigating the relationship between early cardiovascular disease markers and loneliness in young adults.

Sci Rep. 2024-6-20

[4]
The application of machine learning techniques in posttraumatic stress disorder: a systematic review and meta-analysis.

NPJ Digit Med. 2024-5-9

[5]
An imbalance data quality monitoring based on SMOTE-XGBOOST supported by edge computing.

Sci Rep. 2024-5-2

[6]
Addressing loneliness and social isolation in 52 countries: a scoping review of National policies.

BMC Public Health. 2024-5-1

[7]
The Mediating Effect of Depression on the Relationship between Loneliness and Substance Use in Korean Adolescents.

Behav Sci (Basel). 2024-3-17

[8]
The socioeconomic consequences of loneliness: Evidence from a nationally representative longitudinal study of young adults.

Soc Sci Med. 2024-2-22

[9]
Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning.

J Affect Disord. 2024-5-1

[10]
Machine Learning-Based Prediction of Suicidality in Adolescents With Allergic Rhinitis: Derivation and Validation in 2 Independent Nationwide Cohorts.

J Med Internet Res. 2024-2-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索