Suppr超能文献

基于图像重建的车载网络中鲁棒的车牌识别

Robust License Plate Recognition in OCC-Based Vehicle Networks Using Image Reconstruction.

作者信息

Zhang Dingfa, Liu Ziwei, Zhu Weiye, Zheng Jie, Sun Yimao, Chen Chen, Yang Yanbing

机构信息

College of Computer Science, Sichuan University, Chengdu 610065, China.

CPU Design Center, Haiguang Integrated Circuit Design Co., Ltd., Chengdu 610095, China.

出版信息

Sensors (Basel). 2024 Oct 12;24(20):6568. doi: 10.3390/s24206568.

Abstract

With the help of traffic lights and street cameras, optical camera communication (OCC) can be adopted in Internet of Vehicles (IoV) applications to realize communication between vehicles and roadside units. However, the encoded light emitted by these OCC transmitters (LED infrastructures on the roadside and/or LED-based headlamps embedded in cars) will generate stripe patterns in image frames captured by existing license-plate recognition systems, which seriously degrades the accuracy of the recognition. To this end, we propose and experimentally demonstrate a method that can reduce the interference of OCC stripes in the image frames captured by the license-plate recognition system. We introduce an innovative pipeline with an end-to-end image reconstruction module. This module learns the distribution of images without OCC stripes and provides high-quality license-plate images for recognition in OCC conditions. In order to solve the problem of insufficient data, we model the OCC strips as multiplicative noise and propose a method to synthesize a pairwise dataset under OCC using the existing license-plate dataset. Moreover, we also build a prototype to simulate real scenes of the OCC-based vehicle networks and collect data in such scenes. Overall, the proposed method can achieve a recognition performance of 81.58% and 79.35% on the synthesized dataset and that captured from real scenes, respectively, which is improved by about 31.18% and 24.26%, respectively, compared with the conventional method.

摘要

借助交通信号灯和街道摄像头,车辆互联网(IoV)应用中可采用光相机通信(OCC)来实现车辆与路边单元之间的通信。然而,这些OCC发射器(路边的LED基础设施和/或汽车中嵌入的基于LED的前照灯)发出的编码光会在现有车牌识别系统捕获的图像帧中产生条纹图案,这严重降低了识别的准确性。为此,我们提出并通过实验证明了一种方法,该方法可以减少车牌识别系统捕获的图像帧中OCC条纹的干扰。我们引入了一个带有端到端图像重建模块的创新流程。该模块学习无OCC条纹的图像分布,并在OCC条件下提供高质量的车牌图像用于识别。为了解决数据不足的问题,我们将OCC条纹建模为乘性噪声,并提出了一种使用现有车牌数据集在OCC下合成成对数据集的方法。此外,我们还构建了一个原型来模拟基于OCC的车辆网络的真实场景,并在这些场景中收集数据。总体而言,所提出的方法在合成数据集和从真实场景捕获的数据集上分别可以达到81.58%和79.35%的识别性能,与传统方法相比,分别提高了约31.18%和24.26%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca9/11511293/ee58d15e49ca/sensors-24-06568-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验