Suppr超能文献

基于多源信息的多分支选择性融合深度残差网络轴承故障诊断

Multi-Source Information-Based Bearing Fault Diagnosis Using Multi-Branch Selective Fusion Deep Residual Network.

作者信息

Xiong Shoucong, Zhang Leping, Yang Yingxin, Zhou Hongdi, Zhang Leilei

机构信息

School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.

School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China.

出版信息

Sensors (Basel). 2024 Oct 12;24(20):6581. doi: 10.3390/s24206581.

Abstract

Rolling bearing is the core component of industrial machines, but it is difficult for common single signal source-based fault diagnosis methods to ensure reliable results since sensor signals are vulnerable to the pollution of background noises and the attenuation of transmitted information. Recently, multi-source information-based fault diagnosis methods have become popular, but the information redundancy between multiple signals is a tough problem that will negatively impact the representational capacity of deep learning algorithms and the precision of fault diagnosis methods. Besides that, the characteristics of various signals are actually different, but this problem was usually omitted by researchers, and it has potential to further improve the diagnosing performance by adaptively adjusting the feature extraction process for every input signal source. Aimed at solving the above problems, a novel model for bearing fault diagnosis called multi-branch selective fusion deep residual network is proposed in this paper. The model adopts a multi-branch structure design to enable every input signal source to have a unique feature processing channel, avoiding the information of multiple signal sources blindly coupled by convolution kernels. And in each branch, different convolution kernel sizes are assigned according to the characteristics of every input signal, fully digging the precious fault components on respective information sources. Lastly, the dropout technique is used to randomly throw out some activated neurons, alleviating the redundancy and enhancing the quality of the multiscale features extracted from different signals. The proposed method was experimentally compared with other intelligent methods on two authoritative public bearing datasets, and the experimental results prove the feasibility and superiority of the proposed model.

摘要

滚动轴承是工业机器的核心部件,但基于常见单信号源的故障诊断方法难以确保可靠结果,因为传感器信号容易受到背景噪声的污染和传输信息的衰减。近年来,基于多源信息的故障诊断方法开始流行,但多个信号之间的信息冗余是一个棘手问题,会对深度学习算法的表征能力和故障诊断方法的精度产生负面影响。除此之外,各种信号的特征实际上是不同的,但研究人员通常忽略了这个问题,通过自适应调整每个输入信号源的特征提取过程,有可能进一步提高诊断性能。针对上述问题,本文提出了一种名为多分支选择性融合深度残差网络的轴承故障诊断新模型。该模型采用多分支结构设计,使每个输入信号源都有一个独特的特征处理通道,避免了多个信号源的信息被卷积核盲目耦合。并且在每个分支中,根据每个输入信号的特征分配不同的卷积核大小,充分挖掘各个信息源上宝贵的故障成分。最后,使用随机失活技术随机丢弃一些激活的神经元,减轻冗余并提高从不同信号中提取的多尺度特征的质量。在两个权威的公共轴承数据集上,将所提出的方法与其他智能方法进行了实验比较,实验结果证明了所提模型的可行性和优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11511150/c392c660fa3f/sensors-24-06581-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验