Suppr超能文献

通过机器学习分析对表面增强拉曼散射光谱数据进行腺苷磷酸的同时识别和检测。

Simultaneous Recognition and Detection of Adenosine Phosphates by Machine Learning Analysis for Surface-Enhanced Raman Scattering Spectral Data.

机构信息

Department of Information Networking, Graduate School of Information Science and Technology, Osaka University, 2-8 Yamadaoka, Suita 565-0871, Osaka, Japan.

Department of Interdisciplinary Informatics, Graduate School of Informatics, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan.

出版信息

Sensors (Basel). 2024 Oct 15;24(20):6648. doi: 10.3390/s24206648.

Abstract

Adenosine phosphates (adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), and adenosine 5'-triphosphate (ATP)) play important roles in energy storage and signal transduction in the human body. Thus, a measurement method that simultaneously recognizes and detects adenosine phosphates is necessary to gain insight into complex energy-relevant biological processes. Surface-enhanced Raman scattering (SERS) is a powerful technique for this purpose. However, the similarities in size, charge, and structure of adenosine phosphates (APs) make their simultaneous recognition and detection difficult. Although approaches that combine SERS and machine learning have been studied, they require massive quantities of training data. In this study, limited AP spectral data were obtained using fabricated gold nanostructures for SERS measurements. The training data were created by feature selection and data augmentation after preprocessing the small amount of acquired spectral data. The performances of several machine learning models trained on these generated training data were compared. Multilayer perceptron model successfully detected the presence of AMP, ADP, and ATP with an accuracy of 0.914. Consequently, this study establishes a new measurement system that enables the highly accurate recognition and detection of adenosine phosphates from limited SERS spectral data.

摘要

腺嘌呤核苷酸(腺嘌呤 5′-一磷酸(AMP)、腺嘌呤 5′-二磷酸(ADP)和腺嘌呤 5′-三磷酸(ATP))在人体的能量储存和信号转导中发挥着重要作用。因此,需要一种能够同时识别和检测腺嘌呤核苷酸的测量方法,以深入了解复杂的与能量相关的生物过程。表面增强拉曼散射(SERS)是一种非常有效的技术。然而,腺嘌呤核苷酸(APs)在大小、电荷和结构上的相似性使得它们的同时识别和检测变得困难。虽然已经研究了将 SERS 和机器学习相结合的方法,但它们需要大量的训练数据。在这项研究中,使用制造的金纳米结构进行 SERS 测量,获得了有限的 AP 光谱数据。通过对少量采集到的光谱数据进行预处理,然后进行特征选择和数据增强,创建了训练数据。比较了在这些生成的训练数据上训练的几种机器学习模型的性能。多层感知器模型成功地以 0.914 的准确率检测到 AMP、ADP 和 ATP 的存在。因此,本研究建立了一个新的测量系统,能够从有限的 SERS 光谱数据中高度准确地识别和检测腺嘌呤核苷酸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfde/11511347/15268b627981/sensors-24-06648-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验