Suppr超能文献

基于多尺度多级别特征融合与轻量级卷积神经网络的结肠息肉检测

[Colon polyp detection based on multi-scale and multi-level feature fusion and lightweight convolutional neural network].

作者信息

Li Yiyang, Zhao Jiayi, Yu Ruoyi, Liu Huixiang, Liang Shuang, Gu Yu

机构信息

School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China.

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Oct 25;41(5):911-918. doi: 10.7507/1001-5515.202312014.

Abstract

Early diagnosis and treatment of colorectal polyps are crucial for preventing colorectal cancer. This paper proposes a lightweight convolutional neural network for the automatic detection and auxiliary diagnosis of colorectal polyps. Initially, a 53-layer convolutional backbone network is used, incorporating a spatial pyramid pooling module to achieve feature extraction with different receptive field sizes. Subsequently, a feature pyramid network is employed to perform cross-scale fusion of feature maps from the backbone network. A spatial attention module is utilized to enhance the perception of polyp image boundaries and details. Further, a positional pattern attention module is used to automatically mine and integrate key features across different levels of feature maps, achieving rapid, efficient, and accurate automatic detection of colorectal polyps. The proposed model is evaluated on a clinical dataset, achieving an accuracy of 0.9982, recall of 0.9988, F1 score of 0.9984, and mean average precision (mAP) of 0.9953 at an intersection over union (IOU) threshold of 0.5, with a frame rate of 74 frames per second and a parameter count of 9.08 M. Compared to existing mainstream methods, the proposed method is lightweight, has low operating configuration requirements, high detection speed, and high accuracy, making it a feasible technical method and important tool for the early detection and diagnosis of colorectal cancer.

摘要

结直肠息肉的早期诊断和治疗对于预防结直肠癌至关重要。本文提出了一种用于结直肠息肉自动检测和辅助诊断的轻量级卷积神经网络。首先,使用一个53层的卷积骨干网络,并入一个空间金字塔池化模块以实现不同感受野大小的特征提取。随后,采用特征金字塔网络对骨干网络的特征图进行跨尺度融合。利用空间注意力模块增强对息肉图像边界和细节的感知。此外,使用位置模式注意力模块自动挖掘和整合不同层次特征图的关键特征,实现结直肠息肉的快速、高效且准确的自动检测。所提出的模型在临床数据集上进行评估,在交并比(IOU)阈值为0.5时,准确率达到0.9982,召回率为0.9988,F1分数为0.9984,平均精度均值(mAP)为0.9953,帧率为每秒74帧,参数数量为9.08M。与现有主流方法相比,所提出的方法轻量级,操作配置要求低,检测速度快且准确率高,使其成为结直肠癌早期检测和诊断的可行技术方法和重要工具。

相似文献

8
Attention based multi-scale parallel network for polyp segmentation.基于注意力的多尺度并行网络用于息肉分割。
Comput Biol Med. 2022 Jul;146:105476. doi: 10.1016/j.compbiomed.2022.105476. Epub 2022 Apr 25.
9
SC-Net: Symmetrical conical network for colorectal pathology image segmentation.SC-Net:用于结直肠病理图像分割的对称锥形网络。
Comput Methods Programs Biomed. 2024 May;248:108119. doi: 10.1016/j.cmpb.2024.108119. Epub 2024 Mar 13.
10
[Lung parenchyma segmentation based on double scale parallel attention network].基于双尺度并行注意力网络的肺实质分割
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Aug 25;39(4):721-729. doi: 10.7507/1001-5515.202108005.

本文引用的文献

4
Will Computer-Aided Detection and Diagnosis Revolutionize Colonoscopy?计算机辅助检测与诊断会给结肠镜检查带来变革吗?
Gastroenterology. 2017 Dec;153(6):1460-1464.e1. doi: 10.1053/j.gastro.2017.10.026. Epub 2017 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验