Li Yiyang, Zhao Jiayi, Yu Ruoyi, Liu Huixiang, Liang Shuang, Gu Yu
School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China.
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Oct 25;41(5):911-918. doi: 10.7507/1001-5515.202312014.
Early diagnosis and treatment of colorectal polyps are crucial for preventing colorectal cancer. This paper proposes a lightweight convolutional neural network for the automatic detection and auxiliary diagnosis of colorectal polyps. Initially, a 53-layer convolutional backbone network is used, incorporating a spatial pyramid pooling module to achieve feature extraction with different receptive field sizes. Subsequently, a feature pyramid network is employed to perform cross-scale fusion of feature maps from the backbone network. A spatial attention module is utilized to enhance the perception of polyp image boundaries and details. Further, a positional pattern attention module is used to automatically mine and integrate key features across different levels of feature maps, achieving rapid, efficient, and accurate automatic detection of colorectal polyps. The proposed model is evaluated on a clinical dataset, achieving an accuracy of 0.9982, recall of 0.9988, F1 score of 0.9984, and mean average precision (mAP) of 0.9953 at an intersection over union (IOU) threshold of 0.5, with a frame rate of 74 frames per second and a parameter count of 9.08 M. Compared to existing mainstream methods, the proposed method is lightweight, has low operating configuration requirements, high detection speed, and high accuracy, making it a feasible technical method and important tool for the early detection and diagnosis of colorectal cancer.
结直肠息肉的早期诊断和治疗对于预防结直肠癌至关重要。本文提出了一种用于结直肠息肉自动检测和辅助诊断的轻量级卷积神经网络。首先,使用一个53层的卷积骨干网络,并入一个空间金字塔池化模块以实现不同感受野大小的特征提取。随后,采用特征金字塔网络对骨干网络的特征图进行跨尺度融合。利用空间注意力模块增强对息肉图像边界和细节的感知。此外,使用位置模式注意力模块自动挖掘和整合不同层次特征图的关键特征,实现结直肠息肉的快速、高效且准确的自动检测。所提出的模型在临床数据集上进行评估,在交并比(IOU)阈值为0.5时,准确率达到0.9982,召回率为0.9988,F1分数为0.9984,平均精度均值(mAP)为0.9953,帧率为每秒74帧,参数数量为9.08M。与现有主流方法相比,所提出的方法轻量级,操作配置要求低,检测速度快且准确率高,使其成为结直肠癌早期检测和诊断的可行技术方法和重要工具。