Suppr超能文献

基于机器学习的电子顺磁共振谱分类及辐射剂量预测研究

[Research on electron paramagnetic resonance spectrum classification and radiation dose prediction based on machine learning].

作者信息

Xiong Guangwei, Chen Bo, Ma Lei, Jia Longpeng, Chen Shunian, Wu Ke, Ning Jing, Zhu Bin, Guo Junwang

机构信息

Institute of Radiation Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, P. R. China.

Institute of Smart Manufacturing Systems, Chang'an University, Xi'an 710061, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Oct 25;41(5):995-1002. doi: 10.7507/1001-5515.202302015.

Abstract

The electron paramagnetic resonance (EPR) method can be used for on-site, rapid, and non-invasive detection of radiation dose to casualties after nuclear and radiation emergencies. For EPR spectrum analysis, manual labeling of peaks and calculation of signal intensity are often used, which have problems such as large workload and interference by subjective factors. In this study, a method for automatic classification and identification of EPR spectra was established using support vector machine (SVM) technology, which can in-batch and automatically identify and screen out invalid spectra due to vibration and dental surface water interference during EPR measurements. In this study, a spectrum analysis method based on genetic algorithm optimization neural network (GA-BPNN) was established, which can automatically identify the radiation-induced signals in EPR spectra and predict the radiation doses received by the injured. The experimental results showed that the SVM and GA-BPNN spectrum processing methods established in this study could effectively accomplish the automatic spectra classification and radiation dose prediction, and could meet the needs of dose assessment in nuclear emergency. This study explored the application of machine learning methods in EPR spectrum processing, improved the intelligence level of EPR spectrum processing, and would help to enhance the efficiency of mass EPR spectra processing.

摘要

电子顺磁共振(EPR)方法可用于在核与辐射应急后对伤员的辐射剂量进行现场、快速和非侵入性检测。对于EPR谱分析,常采用手动标记峰和计算信号强度的方法,存在工作量大、受主观因素干扰等问题。本研究利用支持向量机(SVM)技术建立了一种EPR谱自动分类识别方法,该方法能够批量自动识别并筛选出EPR测量过程中因振动和牙齿表面水干扰产生的无效谱。本研究还建立了一种基于遗传算法优化神经网络(GA-BPNN)的谱分析方法,该方法能够自动识别EPR谱中的辐射诱导信号,并预测伤者所接受的辐射剂量。实验结果表明,本研究建立的SVM和GA-BPNN谱处理方法能够有效完成谱的自动分类和辐射剂量预测,满足核应急剂量评估的需求。本研究探索了机器学习方法在EPR谱处理中的应用,提高了EPR谱处理的智能化水平,有助于提高大量EPR谱的处理效率。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验