Suppr超能文献

利用现有临床数据在入院和出院时衡量老年住院患者的虚弱程度:医院患者登记研究。

Using Existing Clinical Data to Measure Older Adult Inpatients' Frailty at Admission and Discharge: Hospital Patient Register Study.

机构信息

Swiss Centre of Expertise in the Social Sciences (FORS), Lausanne, Switzerland.

University of Applied Sciences and Arts Western Switzerland (HES-SO), Sion, Switzerland.

出版信息

JMIR Aging. 2024 Oct 28;7:e54839. doi: 10.2196/54839.

Abstract

BACKGROUND

Frailty is a widespread geriatric syndrome among older adults, including hospitalized older inpatients. Some countries use electronic frailty measurement tools to identify frailty at the primary care level, but this method has rarely been investigated during hospitalization in acute care hospitals. An electronic frailty measurement instrument based on population-based hospital electronic health records could effectively detect frailty, frailty-related problems, and complications as well be a clinical alert. Identifying frailty among older adults using existing patient health data would greatly aid the management and support of frailty identification and could provide a valuable public health instrument without additional costs.

OBJECTIVE

We aim to explore a data-driven frailty measurement instrument for older adult inpatients using data routinely collected at hospital admission and discharge.

METHODS

A retrospective electronic patient register study included inpatients aged ≥65 years admitted to and discharged from a public hospital between 2015 and 2017. A dataset of 53,690 hospitalizations was used to customize this data-driven frailty measurement instrument inspired by the Edmonton Frailty Scale developed by Rolfson et al. A 2-step hierarchical cluster procedure was applied to compute e-Frail-CH (Switzerland) scores at hospital admission and discharge. Prevalence, central tendency, comparative, and validation statistics were computed.

RESULTS

Mean patient age at admission was 78.4 (SD 7.9) years, with more women admitted (28,018/53,690, 52.18%) than men (25,672/53,690, 47.81%). Our 2-step hierarchical clustering approach computed 46,743 inputs of hospital admissions and 47,361 for discharges. Clustering solutions scored from 0.5 to 0.8 on a scale from 0 to 1. Patients considered frail comprised 42.02% (n=19,643) of admissions and 48.23% (n=22,845) of discharges. Within e-Frail-CH's 0-12 range, a score ≥6 indicated frailty. We found a statistically significant mean e-Frail-CH score change between hospital admission (5.3, SD 2.6) and discharge (5.75, SD 2.7; P<.001). Sensitivity and specificity cut point values were 0.82 and 0.88, respectively. The area under the receiver operating characteristic curve was 0.85. Comparing the e-Frail-CH instrument to the existing Functional Independence Measure (FIM) instrument, FIM scores indicating severe dependence equated to e-Frail-CH scores of ≥9, with a sensitivity and specificity of 0.97 and 0.88, respectively. The area under the receiver operating characteristic curve was 0.92. There was a strong negative association between e-Frail-CH scores at hospital discharge and FIM scores (r=-0.844; P<.001).

CONCLUSIONS

An electronic frailty measurement instrument was constructed and validated using patient data routinely collected during hospitalization, especially at admission and discharge. The mean e-Frail-CH score was higher at discharge than at admission. The routine calculation of e-Frail-CH scores during hospitalization could provide very useful clinical alerts on the health trajectories of older adults and help select interventions for preventing or mitigating frailty.

摘要

背景

衰弱是老年人中普遍存在的老年综合征,包括住院的老年住院患者。一些国家使用电子衰弱测量工具在初级保健层面识别衰弱,但这种方法在急性护理医院住院期间很少被研究。基于基于人群的医院电子健康记录的电子衰弱测量工具可以有效地检测衰弱、衰弱相关问题和并发症,并且可以作为临床警报。利用现有患者健康数据识别老年人的衰弱,可以极大地帮助衰弱的管理和支持识别,并可以提供一种有价值的公共卫生工具,而无需额外费用。

目的

我们旨在探索一种基于数据的衰弱测量工具,用于使用住院时常规收集的数据对 65 岁以上的住院患者进行测量。

方法

一项回顾性电子患者登记研究纳入了 2015 年至 2017 年期间在一家公立医院住院和出院的年龄≥65 岁的住院患者。使用 53690 次住院的数据集,根据 Rolfson 等人开发的埃德蒙顿衰弱量表定制了这种基于数据的衰弱测量工具。应用两步层次聚类程序在入院和出院时计算 e-Frail-CH(瑞士)评分。计算了患病率、集中趋势、比较和验证统计数据。

结果

入院时患者的平均年龄为 78.4(SD 7.9)岁,女性入院人数(28018/53690,52.18%)多于男性(25672/53690,47.81%)。我们的两步层次聚类方法计算了 46743 次入院和 47361 次出院的输入。聚类解决方案的评分在 0 到 1 之间的 0.5 到 0.8 之间。认为衰弱的患者占入院人数的 42.02%(n=19643)和出院人数的 48.23%(n=22845)。在 e-Frail-CH 的 0-12 范围内,得分≥6 表示衰弱。我们发现入院时(5.3,SD 2.6)和出院时(5.75,SD 2.7;P<.001)之间 e-Frail-CH 评分的变化具有统计学意义。敏感性和特异性截断值分别为 0.82 和 0.88。接收者操作特征曲线下的面积为 0.85。将 e-Frail-CH 仪器与现有的功能独立性测量(FIM)仪器进行比较,FIM 评分表明严重依赖的患者相当于 e-Frail-CH 评分≥9,敏感性和特异性分别为 0.97 和 0.88,接受者操作特征曲线下的面积为 0.92。出院时 e-Frail-CH 评分与 FIM 评分呈强负相关(r=-0.844;P<.001)。

结论

使用住院期间常规收集的患者数据构建并验证了电子衰弱测量仪器,特别是入院和出院时的数据。出院时的平均 e-Frail-CH 评分高于入院时。在住院期间常规计算 e-Frail-CH 评分可以为老年人的健康轨迹提供非常有用的临床警报,并有助于选择预防或减轻衰弱的干预措施。

相似文献

2
Clinical frailty and functional trajectories in hospitalized older adults: A retrospective observational study.
Geriatr Gerontol Int. 2017 Jul;17(7):1063-1068. doi: 10.1111/ggi.12827. Epub 2016 Jul 18.
5
Effectiveness of the frailty index in predicting short-term and long-term mortality risk in patients with chronic heart failure.
Arch Gerontol Geriatr. 2025 Jan;128:105635. doi: 10.1016/j.archger.2024.105635. Epub 2024 Sep 11.
8
Frailty and Risk of Adverse Outcomes in Hospitalized Older Adults: A Comparison of Different Frailty Measures.
J Am Med Dir Assoc. 2017 Jul 1;18(7):638.e7-638.e11. doi: 10.1016/j.jamda.2017.04.011. Epub 2017 Jun 3.
10
Development and validation of an electronic frailty index using routine primary care electronic health record data.
Age Ageing. 2016 May;45(3):353-60. doi: 10.1093/ageing/afw039. Epub 2016 Mar 3.

本文引用的文献

1
What patient-reported outcome measures may be suitable for research involving older adults with frailty? A scoping review.
Eur Geriatr Med. 2024 Jun;15(3):629-644. doi: 10.1007/s41999-024-00964-5. Epub 2024 Mar 26.
2
The Feasibility of Deriving the Electronic Frailty Index from Australian General Practice Records.
Clin Interv Aging. 2022 Nov 3;17:1589-1598. doi: 10.2147/CIA.S384691. eCollection 2022.
4
Identifying Frail Patients by Using Electronic Health Records in Primary Care: Current Status and Future Directions.
Front Public Health. 2022 Jun 22;10:901068. doi: 10.3389/fpubh.2022.901068. eCollection 2022.
5
Polypharmacy, comorbidity and frailty: a complex interplay in older patients at the emergency department.
Eur Geriatr Med. 2022 Aug;13(4):849-857. doi: 10.1007/s41999-022-00664-y. Epub 2022 Jun 20.
6
Validation of an electronic frailty index with electronic health records: eFRAGICAP index.
BMC Geriatr. 2022 May 7;22(1):404. doi: 10.1186/s12877-022-03090-8.
7
Development of an Electronic Frailty Index for Hospitalized Older Adults in Sweden.
J Gerontol A Biol Sci Med Sci. 2022 Nov 21;77(11):2311-2319. doi: 10.1093/gerona/glac069.
8
Impact of multimorbidity and frailty on adverse outcomes among older delayed discharge patients: Implications for healthcare policy.
Health Policy. 2022 Mar;126(3):197-206. doi: 10.1016/j.healthpol.2022.01.004. Epub 2022 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验