Department of Translational Medicine, Diagnostic Radiology, Lund University, Malmö, Sweden; Department of Radiology, Helsingborg Hospital, Helsingborg, Sweden.
Department of Translational Medicine, Diagnostic Radiology, Lund University, Malmö, Sweden; Department of Imaging and Functional Medicine, Skåne University Hospital, Malmö, Sweden.
Acta Oncol. 2024 Oct 29;63:816-821. doi: 10.2340/1651-226X.2024.40475.
To evaluate the feasibility of AI-assisted reading of prostate magnetic resonance imaging (MRI) in Organized Prostate cancer Testing (OPT).
Retrospective cohort study including 57 men with elevated prostate-specific antigen (PSA) levels ≥3 µg/L that performed bi-parametric MRI in OPT. The results of a CE-marked deep learning (DL) algorithm for prostate MRI lesion detection were compared with assessments performed by on-site radiologists and reference radiologists. Per patient PI-RADS (Prostate Imaging-Reporting and Data System)/Likert scores were cross-tabulated and compared with biopsy outcomes, if performed. Positive MRI was defined as PI-RADS/Likert ≥4. Reader variability was assessed with weighted kappa scores.
The number of positive MRIs was 13 (23%), 8 (14%), and 29 (51%) for the local radiologists, expert consensus, and DL, respectively. Kappa scores were moderate for local radiologists versus expert consensus 0.55 (95% confidence interval [CI]: 0.37-0.74), slight for local radiologists versus DL 0.12 (95% CI: -0.07 to 0.32), and slight for expert consensus versus DL 0.17 (95% CI: -0.01 to 0.35). Out of 10 cases with biopsy proven prostate cancer with Gleason ≥3+4 the DL scored 7 as Likert ≥4.
The Dl-algorithm showed low agreement with both local and expert radiologists. Training and validation of DL-algorithms in specific screening cohorts is essential before introduction in organized testing.
评估人工智能辅助阅读前列腺磁共振成像(MRI)在有组织的前列腺癌检测(OPT)中的可行性。
本研究为回顾性队列研究,纳入 57 名前列腺特异性抗原(PSA)水平升高≥3μg/L 的男性患者,这些患者在 OPT 中进行了双参数 MRI 检查。比较了一种获得 CE 标志的深度学习(DL)算法对前列腺 MRI 病变检测的结果与现场放射科医生和参考放射科医生的评估。对每个患者的前列腺影像报告和数据系统(PI-RADS)/Likert 评分进行交叉制表,并与活检结果进行比较(如果进行了活检)。将 PI-RADS/Likert≥4 定义为阳性 MRI。使用加权 kappa 评分评估读者间的变异性。
局部放射科医生、专家共识和 DL 对阳性 MRI 的检出率分别为 13(23%)、8(14%)和 29(51%)。局部放射科医生与专家共识的kappa 评分中度(95%可信区间[CI]:0.37-0.74),局部放射科医生与 DL 的 kappa 评分轻度(95%CI:-0.07 至 0.32),专家共识与 DL 的 kappa 评分轻度(95%CI:-0.01 至 0.35)。在 10 例活检证实为 Gleason≥3+4 的前列腺癌病例中,DL 评分中有 7 例为 Likert≥4。
DL 算法与当地和专家放射科医生的一致性均较低。在引入有组织的检测之前,必须在特定的筛查队列中对 DL 算法进行培训和验证。