Suppr超能文献

增添第三维度:颞叶癫痫的三维卷积神经网络诊断

Adding the third dimension: 3D convolutional neural network diagnosis of temporal lobe epilepsy.

作者信息

Kaestner Erik, Hassanzadeh Reihaneh, Gleichgerrcht Ezequiel, Hasenstab Kyle, Roth Rebecca W, Chang Allen, Rüber Theodor, Davis Kathryn A, Dugan Patricia, Kuzniecky Ruben, Fridriksson Julius, Parashos Alexandra, Bagić Anto I, Drane Daniel L, Keller Simon S, Calhoun Vince D, Abrol Anees, Bonilha Leonardo, McDonald Carrie R

机构信息

Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, CA 92037, USA.

Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Brain Commun. 2024 Oct 10;6(5):fcae346. doi: 10.1093/braincomms/fcae346. eCollection 2024.

Abstract

Convolutional neural networks (CNN) show great promise for translating decades of research on structural abnormalities in temporal lobe epilepsy into clinical practice. Three-dimensional CNNs typically outperform two-dimensional CNNs in medical imaging. Here we explore for the first time whether a three-dimensional CNN outperforms a two-dimensional CNN for identifying temporal lobe epilepsy-specific features on MRI. Using 1178 T1-weighted images (589 temporal lobe epilepsy, 589 healthy controls) from 12 surgical centres, we trained 3D and 2D CNNs for temporal lobe epilepsy versus healthy control classification, using feature visualization to identify important regions. The 3D CNN was compared to the 2D model and to a randomized model (comparison to chance). Further, we explored the effect of sample size with subsampling, examined model performance based on single-subject clinical characteristics, and tested the impact of image harmonization on model performance. Across 50 datapoints (10 runs with 5-folds each) the 3D CNN median accuracy was 86.4% (35.3% above chance) and the median 1-score was 86.1% (33.3% above chance). The 3D model yielded higher accuracy compared to the 2D model on 84% of datapoints (median 2D accuracy, 83.0%), a significant outperformance for the 3D model (binomial test: < 0.001). This advantage of the 3D model was only apparent at the highest sample size. Saliency maps exhibited the importance of medial-ventral temporal, cerebellar, and midline subcortical regions across both models for classification. However, the 3D model had higher salience in the most important regions, the ventral-medial temporal and midline subcortical regions. Importantly, the model achieved high accuracy (82% accuracy) even in patients without MRI-identifiable hippocampal sclerosis. Finally, applying ComBat for harmonization did not improve performance. These findings highlight the value of 3D CNNs for identifying subtle structural abnormalities on MRI, especially in patients without clinically identified temporal lobe epilepsy lesions. Our findings also reveal that the advantage of 3D CNNs relies on large sample sizes for model training.

摘要

卷积神经网络(CNN)在将数十年来关于颞叶癫痫结构异常的研究成果转化为临床实践方面展现出巨大潜力。在医学成像中,三维CNN通常比二维CNN表现更优。在此,我们首次探究在通过磁共振成像(MRI)识别颞叶癫痫特异性特征方面,三维CNN是否优于二维CNN。我们使用来自12个手术中心的1178张T1加权图像(589例颞叶癫痫患者、589例健康对照),训练用于区分颞叶癫痫与健康对照的三维和二维CNN,并利用特征可视化来识别重要区域。将三维CNN与二维模型以及随机模型(与随机情况作比较)进行对比。此外,我们通过二次抽样探究样本量的影响,基于单受试者临床特征检验模型性能,并测试图像归一化对模型性能的影响。在50个数据点(10次运行,每次5折交叉验证)上,三维CNN的中位数准确率为86.4%(比随机情况高35.3%),中位数F1分数为86.1%(比随机情况高33.3%)。在84%的数据点上,三维模型的准确率高于二维模型(二维模型中位数准确率为83.0%),三维模型表现出显著优势(二项式检验:<0.001)。三维模型的这一优势仅在样本量最大时才明显。显著性映射显示,对于分类而言,两个模型中颞叶内侧 - 腹侧、小脑及中线皮质下区域都很重要。然而,三维模型在最重要的区域,即腹侧 - 内侧颞叶和中线皮质下区域具有更高的显著性。重要的是,即使在没有MRI可识别的海马硬化的患者中,该模型也能达到较高的准确率(82%)。最后,应用ComBat进行归一化并未提高性能。这些发现凸显了三维CNN在通过MRI识别细微结构异常方面的价值,尤其是在没有临床确诊颞叶癫痫病变的患者中。我们的研究结果还表明,三维CNN的优势依赖于用于模型训练的大样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91b9/11520928/7c51250b92c7/fcae346_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验