基于功函数的 BiS/TiCT MXene 的界面工程用于快速光激发杀菌。
Interfacial engineering of BiS/TiCT MXene based on work function for rapid photo-excited bacteria-killing.
机构信息
School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China.
Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, China.
出版信息
Nat Commun. 2021 Feb 22;12(1):1224. doi: 10.1038/s41467-021-21435-6.
In view of increasing drug resistance, ecofriendly photoelectrical materials are promising alternatives to antibiotics. Here we design an interfacial Schottky junction of BiS/TiCT resulting from the contact potential difference between TiCT and BiS. The different work functions induce the formation of a local electrophilic/nucleophilic region. The self-driven charge transfer across the interface increases the local electron density on TiCT. The formed Schottky barrier inhibits the backflow of electrons and boosts the charge transfer and separation. The photocatalytic activity of BiS/TiCT intensively improved the amount of reactive oxygen species under 808 nm near-infrared radiation. They kill 99.86% of Staphylococcus aureus and 99.92% of Escherichia coli with the assistance of hyperthermia within 10 min. We propose the theory of interfacial engineering based on work function and accordingly design the ecofriendly photoresponsive Schottky junction using two kinds of components with different work functions to effectively eradicate bacterial infection.
鉴于耐药性不断增加,环保型光电材料有望成为抗生素的替代品。在这里,我们设计了一种由 TiCT 和 BiS 之间的接触电位差产生的 BiS/TiCT 界面肖特基结。不同的功函数诱导形成局部亲电/亲核区域。界面上的自驱动电荷转移增加了 TiCT 上的局部电子密度。形成的肖特基势垒抑制电子回流,并促进电荷转移和分离。在 808nm 近红外辐射下,BiS/TiCT 的光催化活性强烈提高了活性氧物质的数量。在 10 分钟内,它们在热疗的辅助下杀死了 99.86%的金黄色葡萄球菌和 99.92%的大肠杆菌。我们提出了基于功函数的界面工程理论,并据此设计了使用两种具有不同功函数的组件的环保光响应肖特基结,以有效消除细菌感染。