Kozielski K L, Jahanshahi A, Gilbert H B, Yu Y, Erin Ö, Francisco D, Alosaimi F, Temel Y, Sitti M
Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Sci Adv. 2021 Jan 13;7(3). doi: 10.1126/sciadv.abc4189. Print 2021 Jan.
Devices that electrically modulate the deep brain have enabled important breakthroughs in the management of neurological and psychiatric disorders. Such devices are typically centimeter-scale, requiring surgical implantation and wired-in powering, which increases the risk of hemorrhage, infection, and damage during daily activity. Using smaller, remotely powered materials could lead to less invasive neuromodulation. Here, we present injectable, magnetoelectric nanoelectrodes that wirelessly transmit electrical signals to the brain in response to an external magnetic field. This mechanism of modulation requires no genetic modification of neural tissue, allows animals to freely move during stimulation, and uses nonresonant carrier frequencies. Using these nanoelectrodes, we demonstrate neuronal modulation in vitro and in deep brain targets in vivo. We also show that local subthalamic modulation promotes modulation in other regions connected via basal ganglia circuitry, leading to behavioral changes in mice. Magnetoelectric materials present a versatile platform technology for less invasive, deep brain neuromodulation.
能够对深部大脑进行电调制的设备,已在神经和精神疾病的治疗中取得了重要突破。这类设备通常有厘米大小,需要通过手术植入并采用有线供电,这增加了出血、感染以及日常活动中造成损伤的风险。使用更小的、远程供电的材料可能会实现侵入性更小的神经调节。在此,我们展示了可注射的磁电纳米电极,其能响应外部磁场向大脑无线传输电信号。这种调制机制无需对神经组织进行基因改造,允许动物在刺激过程中自由活动,并使用非共振载波频率。利用这些纳米电极,我们在体外和体内深部脑靶点均证明了神经元调制。我们还表明,局部丘脑底核调制促进了通过基底神经节回路相连的其他区域的调制,从而导致小鼠行为发生变化。磁电材料为侵入性更小的深部脑神经调制提供了一种通用的平台技术。