Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
The Florey Institute, Parkville, Victoria, Australia.
Nature. 2024 Oct;634(8036):1096-1102. doi: 10.1038/s41586-024-08077-6. Epub 2024 Oct 30.
Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices, aerospace components, microfabrication strategies and artificial organs. Among additive manufacturing approaches, light-based printing technologies, including two-photon polymerization, projection micro stereolithography and volumetric printing, have garnered significant attention due to their speed, resolution or potential applications for biofabrication. Here we introduce dynamic interface printing, a new 3D printing approach that leverages an acoustically modulated, constrained air-liquid boundary to rapidly generate centimetre-scale 3D structures within tens of seconds. Unlike volumetric approaches, this process eliminates the need for intricate feedback systems, specialized chemistry or complex optics while maintaining rapid printing speeds. We demonstrate the versatility of this technique across a broad array of materials and intricate geometries, including those that would be impossible to print with conventional layer-by-layer methods. In doing so, we demonstrate the rapid fabrication of complex structures in situ, overprinting, structural parallelization and biofabrication utility. Moreover, we show that the formation of surface waves at the air-liquid boundary enables enhanced mass transport, improves material flexibility and permits 3D particle patterning. We, therefore, anticipate that this approach will be invaluable for applications where high-resolution, scalable throughput and biocompatible printing is required.
增材制造是一个不断发展的多学科领域,涵盖了医疗器械、航空航天部件、微制造策略和人工器官等应用。在增材制造方法中,基于光的打印技术,包括双光子聚合、投影微立体光刻和体积打印,由于其速度、分辨率或生物制造的潜在应用而引起了广泛关注。在这里,我们介绍了动态界面打印,这是一种新的 3D 打印方法,利用受声调制的受限气液边界在几十秒内快速生成厘米级 3D 结构。与体积方法不同,该过程消除了对复杂反馈系统、特殊化学物质或复杂光学器件的需求,同时保持了快速打印速度。我们展示了这种技术在广泛的材料和复杂几何形状中的多功能性,包括那些用传统逐层方法无法打印的形状。通过这样做,我们展示了在原位、叠印、结构并行化和生物制造实用性方面快速制造复杂结构的能力。此外,我们还表明,在气液边界处形成表面波可以增强质量传递、提高材料的柔韧性,并允许进行 3D 颗粒图案化。因此,我们预计这种方法将在需要高分辨率、可扩展吞吐量和生物相容性打印的应用中非常有价值。