Dinc Niyazi Ulas, Saba Amirhossein, Madrid-Wolff Jorge, Gigli Carlo, Boniface Antoine, Moser Christophe, Psaltis Demetri
Optics Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland.
Laboratory of Applied Photonics Devices, École polytechnique fédérale de Lausanne, Lausanne, Switzerland.
Nanophotonics. 2023 Jan 4;12(5):777-793. doi: 10.1515/nanoph-2022-0512. eCollection 2023 Mar.
The prospect of massive parallelism of optics enabling fast and low energy cost operations is attracting interest for novel photonic circuits where 3-dimensional (3D) implementations have a high potential for scalability. Since the technology for data input-output channels is 2-dimensional (2D), there is an unavoidable need to take 2D-nD transformations into account. Similarly, the 3D-2D and its reverse transformations are also tackled in a variety of fields such as optical tomography, additive manufacturing, and 3D optical memories. Here, we review how these 3D-2D transformations are tackled using iterative techniques and neural networks. This high-level comparison across different, yet related fields could yield a useful perspective for 3D optical design.
光学大规模并行性能够实现快速且低能耗操作,这一前景正吸引着人们对新型光子电路的关注,在这种电路中,三维(3D)实现方式具有很高的可扩展性潜力。由于数据输入输出通道技术是二维(2D)的,因此不可避免地需要考虑二维到三维的转换。同样,三维到二维及其逆转换也在诸如光学层析成像、增材制造和三维光学存储器等各种领域中得到解决。在这里,我们回顾如何使用迭代技术和神经网络来解决这些三维到二维的转换问题。这种对不同但相关领域的高层次比较可以为三维光学设计提供有用的视角。