Department of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States.
Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.
ACS Appl Mater Interfaces. 2024 Nov 13;16(45):61714-61724. doi: 10.1021/acsami.4c13885. Epub 2024 Oct 30.
Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial's surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell-cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.
细菌感染和生物膜形成是医学植入物面临的重大挑战。虽然钛纳米管工程可以提高生物相容性,但它不能防止细菌黏附和生物膜形成。优化生物材料的表面化学性质对于其在生物环境中的预期功能至关重要。本研究展示了将自组装二肽 N-芴甲氧羰基-二苯丙氨酸(Fmoc-FF)通过共价键连接到钛纳米管表面(TiNTs),而不改变其形貌。Fmoc-FF 肽与 TiNTs 结合,可以抑制生物膜形成、消除已存在的生物膜并杀死细菌。这种功能化赋予表面抗菌性能,同时保留有益的纳米管形貌,协同增强生物活性。XPS、FT-IR、EDS 和 SEM 等表面特性分析证实了成功的功能化。细菌黏附实验表明,功能化 TiNT 表面的抗菌活性得到显著提高。这项研究为通过表面功能化将细胞-细胞相互作用、组织工程和多功能自组装短肽的药物控制释放等生物医学应用与植入材料相关联开辟了未来的可能性。