Suppr超能文献

儿科学研究热点:基于美国国立医学图书馆生物医学与健康科学期刊文献数据库读者群的共词聚类分析

Research hotspots in pediatrics: co-word clustering analysis based on readership in PubMed Central.

作者信息

Deng Fangming, Sun Wen, Guo Jiangwei, Yang Yujia

机构信息

Editorial Office of Chinese Journal of Contemporary Pediatrics, Xiangya Medical Academic Promotion Center, Xiangya Hospital, Central South University, Changsha, China.

IDMED Research Lab, Beijing Intelligent Decision Medical Technology Co., Ltd., Beijing, China.

出版信息

Front Pediatr. 2024 Oct 16;12:1460954. doi: 10.3389/fped.2024.1460954. eCollection 2024.

Abstract

OBJECTIVE

By analyzing high readership articles from the () in the PubMed Central (PMC) database, this study aims to identify research hotspots and trends in the field of pediatrics.

METHODS

Articles from the ranked by annual readership in PMC from 2021 to 2023 were collected. Using word frequency analysis and co-word analysis, the thematic characteristics of these articles were explored.

RESULTS

The word frequency analysis and co-word analysis revealed four thematic directions that were of significant interest to researchers: (1) current public health or medical events such as COVID-19 and influenza; (2) mental health issues in children and adolescents; (3) pediatric neurological diseases and neurodevelopment; (4) diseases in preterm infants and newborns.

CONCLUSIONS

This study provides pediatric researchers with a valuable perspective to understand and grasp the development dynamics and future directions in the field of pediatrics.

摘要

目的

通过分析美国国立医学图书馆(NLM)的生物医学文献数据库(PubMed)中来自美国国立医学图书馆(NLM)的高阅读量文章,本研究旨在确定儿科学领域的研究热点和趋势。

方法

收集2021年至2023年在PubMed中按年度阅读量排名的文章。使用词频分析和共词分析,探索这些文章的主题特征。

结果

词频分析和共词分析揭示了研究人员高度关注的四个主题方向:(1)当前的公共卫生或医学事件,如COVID-19和流感;(2)儿童和青少年的心理健康问题;(3)儿科神经疾病和神经发育;(4)早产儿和新生儿疾病。

结论

本研究为儿科研究人员提供了一个有价值的视角,以了解和掌握儿科学领域的发展动态和未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验