From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and.
the Biofunctional Nanomaterials Unit, CICbiomaGUNE, 20009 San Sebastian, Spain.
J Biol Chem. 2013 Jul 19;288(29):21015-21028. doi: 10.1074/jbc.M113.479147. Epub 2013 Jun 10.
Fucose is a common monosaccharide component of cell surfaces and is involved in many biological recognition events. Therefore, definition and exploitation of the specificity of the enzymes (fucosyltransferases) involved in fucosylation is a recurrent theme in modern glycosciences. Despite various studies, the specificities of many fucosyltransferases are still unknown, so new approaches are required to study these. The model nematode Caenorhabditis elegans expresses a wide range of fucosylated glycans, including N-linked oligosaccharides with unusual complex core modifications. Up to three fucose residues can be present on the standard N,N'-diacetylchitobiose unit of these N-glycans, but only the fucosyltransferases responsible for transfer of two of these (the core α1,3-fucosyltransferase FUT-1 and the core α1,6-fucosyltransferase FUT-8) were previously characterized. By use of a glycan library in both array and solution formats, we were able to reveal that FUT-6, another C. elegans α1,3-fucosyltransferase, modifies nematode glycan cores, specifically the distal N-acetylglucosamine residue; this result is in accordance with glycomic analysis of fut-6 mutant worms. This core-modifying activity of FUT-6 in vitro and in vivo is in addition to its previously determined ability to synthesize Lewis X epitopes in vitro. A larger scale synthesis of a nematode N-glycan core in vitro using all three fucosyltransferases was performed, and the nature of the glycosidic linkages was determined by NMR. FUT-6 is probably the first eukaryotic glycosyltransferase whose specificity has been redefined with the aid of glycan microarrays and so is a paradigm for the study of other unusual glycosidic linkages in model and parasitic organisms.
岩藻糖是细胞表面常见的单糖成分,参与许多生物识别事件。因此,定义和利用参与岩藻糖基化的酶(岩藻糖基转移酶)的特异性是现代糖科学中的一个反复出现的主题。尽管进行了各种研究,但许多岩藻糖基转移酶的特异性仍然未知,因此需要新的方法来研究这些酶。模式线虫秀丽隐杆线虫表达广泛的岩藻糖基化聚糖,包括具有不寻常复杂核心修饰的 N 连接寡糖。这些 N-糖中的标准 N,N'-二乙酰壳二糖单元上可以存在多达三个岩藻糖残基,但之前仅表征了负责转移其中两个(核心α1,3-岩藻糖基转移酶 FUT-1 和核心α1,6-岩藻糖基转移酶 FUT-8)的岩藻糖基转移酶。通过使用聚糖文库在阵列和溶液格式中,我们能够揭示另一种 C. elegans α1,3-岩藻糖基转移酶 FUT-6 修饰线虫聚糖核心,特别是远端 N-乙酰葡萄糖胺残基;这一结果与 fut-6 突变体蠕虫的糖组学分析相符。FUT-6 在体外和体内的这种核心修饰活性除了其先前确定的在体外合成 Lewis X 表位的能力之外。使用所有三种岩藻糖基转移酶在体外进行了更大规模的线虫 N-聚糖核心合成,并通过 NMR 确定了糖苷键的性质。FUT-6 可能是第一个借助糖基化芯片重新定义其特异性的真核糖基转移酶,因此是研究模型和寄生生物中其他异常糖苷键的典范。