Xiang Lanyi, He Zihan, Yan Chaoyi, Zhao Yao, Li Zhiyi, Jia Lingxuan, Jiang Ziling, Dai Xiaojuan, Lemaur Vincent, Ma Yingqiao, Liu Liyao, Meng Qing, Zou Ye, Beljonne David, Zhang Fengjiao, Zhang Deqing, Di Chong-An, Zhu Daoben
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
Nat Nanotechnol. 2024 Aug;19(8):1122-1129. doi: 10.1038/s41565-024-01653-x. Epub 2024 Apr 22.
Nanoresolved doping of polymeric semiconductors can overcome scaling limitations to create highly integrated flexible electronics, but remains a fundamental challenge due to isotropic diffusion of the dopants. Here we report a general methodology for achieving nanoscale ion-implantation-like electrochemical doping of polymeric semiconductors. This approach involves confining counterion electromigration within a glassy electrolyte composed of room-temperature ionic liquids and high-glass-transition-temperature insulating polymers. By precisely adjusting the electrolyte glass transition temperature (T) and the operating temperature (T), we create a highly localized electric field distribution and achieve anisotropic ion migration that is nearly vertical to the nanotip electrodes. The confined doping produces an excellent resolution of 56 nm with a lateral-extended doping length down to as little as 9.3 nm. We reveal a universal exponential dependence of the doping resolution on the temperature difference (T - T) that can be used to depict the doping resolution for almost infinite polymeric semiconductors. Moreover, we demonstrate its implications in a range of polymer electronic devices, including a 200% performance-enhanced organic transistor and a lateral p-n diode with seamless junction widths of <100 nm. Combined with a further demonstration in the scalability of the nanoscale doping, this concept may open up new opportunities for polymer-based nanoelectronics.
聚合物半导体的纳米级掺杂可以克服尺寸缩放限制,以制造高度集成的柔性电子产品,但由于掺杂剂的各向同性扩散,这仍然是一个根本性挑战。在此,我们报告一种实现聚合物半导体纳米级离子注入式电化学掺杂的通用方法。这种方法涉及将抗衡离子电迁移限制在由室温离子液体和高玻璃化转变温度绝缘聚合物组成的玻璃态电解质内。通过精确调节电解质玻璃化转变温度(Tg)和工作温度(T),我们创建了高度局部化的电场分布,并实现了几乎垂直于纳米尖端电极的各向异性离子迁移。受限掺杂产生了56纳米的出色分辨率,横向扩展的掺杂长度低至9.3纳米。我们揭示了掺杂分辨率对温度差(Tg - T)的普遍指数依赖性,可用于描述几乎所有聚合物半导体的掺杂分辨率。此外,我们展示了其在一系列聚合物电子器件中的应用,包括性能提高200%的有机晶体管和无缝结宽度小于100纳米的横向p-n二极管。结合纳米级掺杂可扩展性的进一步证明,这一概念可能为基于聚合物的纳米电子学开辟新机遇。