Suppr超能文献

用于从神经网络的功能预测结构的几何框架。

Geometric framework to predict structure from function in neural networks.

作者信息

Biswas Tirthabir, Fitzgerald James E

机构信息

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.

Department of Physics, Loyola University, New Orleans, Louisiana 70118, USA.

出版信息

Phys Rev Res. 2022 Jun-Aug;4(2):023255. doi: 10.1103/physrevresearch.4.023255. Epub 2022 Jun 22.

Abstract

Neural computation in biological and artificial networks relies on the nonlinear summation of many inputs. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function, but quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of threshold-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate the solution space of all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. A generalization accounting for noise further reveals that the solution space geometry can undergo topological transitions as the allowed error increases, which could provide insight into both neuroscience and machine learning. We ultimately use this geometric characterization to derive certainty conditions guaranteeing a nonzero synapse between neurons. Our theoretical framework could thus be applied to neural activity data to make rigorous anatomical predictions that follow generally from the model architecture.

摘要

生物网络和人工网络中的神经计算依赖于众多输入的非线性总和。神经元之间突触权重的结构连接矩阵是整体网络功能的关键决定因素,但神经网络结构与功能之间的定量联系复杂且微妙。例如,许多网络可以产生相似的功能反应,并且同一个网络根据上下文的不同也可以有不同的功能。在很大程度上,尚不清楚是否需要特定的突触连接模式来生成特定的网络级计算。在这里,我们引入了一个几何框架,用于识别阈值线性神经元循环网络中稳态反应所需的突触连接。假设指定反应模式的数量不超过输入突触的数量,我们通过分析计算出所有前馈和循环连接矩阵的解空间,这些矩阵可以从网络输入生成指定的反应。考虑噪声的一种推广进一步表明,随着允许误差的增加,解空间几何结构可能会发生拓扑转变,这可能为神经科学和机器学习提供见解。我们最终利用这种几何特征来推导保证神经元之间存在非零突触的确定性条件。因此,我们的理论框架可以应用于神经活动数据,以做出严格的解剖学预测,这些预测通常源于模型架构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/245c/10456994/b792176db296/nihms-1871758-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验