Suppr超能文献

用于压力监测的基于可穿戴脑电图的脑机接口

Wearable EEG-Based Brain-Computer Interface for Stress Monitoring.

作者信息

Premchand Brian, Liang Liyuan, Phua Kok Soon, Zhang Zhuo, Wang Chuanchu, Guo Ling, Ang Jennifer, Koh Juliana, Yong Xueyi, Ang Kai Keng

机构信息

Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore.

Home Team Science and Technology Agency (HTX), 1 Stars Avenue, #12-01, Singapore 138507, Singapore.

出版信息

NeuroSci. 2024 Oct 8;5(4):407-428. doi: 10.3390/neurosci5040031. eCollection 2024 Dec.

Abstract

Detecting stress is important for improving human health and potential, because moderate levels of stress may motivate people towards better performance at cognitive tasks, while chronic stress exposure causes impaired performance and health risks. We propose a Brain-Computer Interface (BCI) system to detect stress in the context of high-pressure work environments. The BCI system includes an electroencephalogram (EEG) headband with dry electrodes and an electrocardiogram (ECG) chest belt. We collected EEG and ECG data from 40 participants during two stressful cognitive tasks: the Cognitive Vigilance Task (CVT), and the Multi-Modal Integration Task (MMIT) we designed. We also recorded self-reported stress levels using the Dundee Stress State Questionnaire (DSSQ). The DSSQ results indicated that performing the MMIT led to significant increases in stress, while performing the CVT did not. Subsequently, we trained two different models to classify stress from non-stress states, one using EEG features, and the other using heart rate variability (HRV) features extracted from the ECG. Our EEG-based model achieved an overall accuracy of 81.0% for MMIT and 77.2% for CVT. However, our HRV-based model only achieved 62.1% accuracy for CVT and 56.0% for MMIT. We conclude that EEG is an effective predictor of stress in the context of stressful cognitive tasks. Our proposed BCI system shows promise in evaluating mental stress in high-pressure work environments, particularly when utilizing an EEG-based BCI.

摘要

检测压力对于改善人类健康和潜力很重要,因为适度的压力可能会促使人们在认知任务中表现得更好,而长期暴露于压力下会导致表现受损和健康风险。我们提出了一种脑机接口(BCI)系统,用于在高压工作环境中检测压力。该BCI系统包括一个带有干电极的脑电图(EEG)头带和一个心电图(ECG)胸带。我们在两项有压力的认知任务中收集了40名参与者的EEG和ECG数据:认知警觉任务(CVT)和我们设计的多模态整合任务(MMIT)。我们还使用邓迪压力状态问卷(DSSQ)记录了自我报告的压力水平。DSSQ结果表明,执行MMIT会导致压力显著增加,而执行CVT则不会。随后,我们训练了两种不同的模型来区分压力状态和非压力状态,一种使用EEG特征,另一种使用从ECG中提取的心率变异性(HRV)特征。我们基于EEG的模型在MMIT上的总体准确率为81.0%,在CVT上为77.2%。然而,我们基于HRV的模型在CVT上的准确率仅为62.1%,在MMIT上为56.0%。我们得出结论,在有压力的认知任务中,EEG是压力的有效预测指标。我们提出的BCI系统在评估高压工作环境中的心理压力方面显示出前景,特别是在使用基于EEG的BCI时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ece9/11503304/de44ebb64f30/neurosci-05-00031-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验