Kang Iksung, Kim Hyeonggeon, Natan Ryan, Zhang Qinrong, Yu Stella X, Ji Na
bioRxiv. 2024 Dec 6:2024.10.20.619284. doi: 10.1101/2024.10.20.619284.
Adaptive optics (AO) restore ideal imaging performance in complex samples by measuring and correcting optical aberrations, but often require custom-built microscopes with carefully aligned wavefront sensing/shaping devices and can be susceptible to sample motion. Here we describe NeAT, a computational framework using neural fields for AO two-photon fluorescence microscopy. NeAT estimates wavefront aberration and recovers sample structure from a 3D image stack without requiring external datasets for training. Incorporating motion correction in learning and correcting conjugation errors commonly found in commercial microscopes, NeAT is designed for deployment in biological laboratories for in vivo imaging. We validate NeAT's performance using a custom-built microscope with a wavefront sensor under varying signal-to-noise ratios, aberration, and motion conditions. With a commercial microscope, we demonstrate real-time aberration correction for in vivo morphological and functional imaging in the living mouse brain, with NeAT improving signal and accuracy of glutamate and calcium imaging of synapses and neurons.
自适应光学(AO)通过测量和校正光学像差来恢复复杂样本中的理想成像性能,但通常需要配备精心校准的波前传感/整形设备的定制显微镜,并且可能容易受到样本运动的影响。在此,我们描述了NeAT,这是一种使用神经场的计算框架,用于AO双光子荧光显微镜。NeAT可估计波前像差,并从3D图像堆栈中恢复样本结构,无需外部数据集进行训练。NeAT在学习过程中纳入了运动校正,并校正了商业显微镜中常见的共轭误差,专为在生物实验室中进行体内成像而设计。我们使用配备波前传感器的定制显微镜,在不同的信噪比、像差和运动条件下验证了NeAT的性能。使用商业显微镜,我们展示了对活体小鼠大脑进行体内形态和功能成像的实时像差校正,NeAT提高了突触和神经元谷氨酸和钙成像的信号和准确性。