Suppr超能文献

协同信息支持神经网络在解决多项任务时的模态整合和灵活学习。

Synergistic information supports modality integration and flexible learning in neural networks solving multiple tasks.

作者信息

Proca Alexandra M, Rosas Fernando E, Luppi Andrea I, Bor Daniel, Crosby Matthew, Mediano Pedro A M

机构信息

Department of Computing, Imperial College London, London, United Kingdom.

Department of Informatics, University of Sussex, Brighton, United Kingdom.

出版信息

PLoS Comput Biol. 2024 Jun 3;20(6):e1012178. doi: 10.1371/journal.pcbi.1012178. eCollection 2024 Jun.

Abstract

Striking progress has been made in understanding cognition by analyzing how the brain is engaged in different modes of information processing. For instance, so-called synergistic information (information encoded by a set of neurons but not by any subset) plays a key role in areas of the human brain linked with complex cognition. However, two questions remain unanswered: (a) how and why a cognitive system can become highly synergistic; and (b) how informational states map onto artificial neural networks in various learning modes. Here we employ an information-decomposition framework to investigate neural networks performing cognitive tasks. Our results show that synergy increases as networks learn multiple diverse tasks, and that in tasks requiring integration of multiple sources, performance critically relies on synergistic neurons. Overall, our results suggest that synergy is used to combine information from multiple modalities-and more generally for flexible and efficient learning. These findings reveal new ways of investigating how and why learning systems employ specific information-processing strategies, and support the principle that the capacity for general-purpose learning critically relies on the system's information dynamics.

摘要

通过分析大脑如何参与不同的信息处理模式,在理解认知方面已经取得了显著进展。例如,所谓的协同信息(由一组神经元编码但不由任何子集编码的信息)在与复杂认知相关的人类大脑区域中起着关键作用。然而,有两个问题仍未得到解答:(a)认知系统如何以及为何能够变得高度协同;(b)信息状态在各种学习模式下如何映射到人工神经网络。在这里,我们采用一种信息分解框架来研究执行认知任务的神经网络。我们的结果表明,随着网络学习多种不同任务,协同作用会增加,并且在需要整合多个来源的任务中,性能关键依赖于协同神经元。总体而言,我们的结果表明,协同作用被用于组合来自多种模态的信息——更普遍地说,用于灵活高效的学习。这些发现揭示了研究学习系统如何以及为何采用特定信息处理策略的新方法,并支持这样一种原则,即通用学习能力关键依赖于系统的信息动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc2c/11175422/4157d21b4b8e/pcbi.1012178.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验