Suppr超能文献

一种多模态、不对称、加权和有向的解剖连接描述。

A multi-modal, asymmetric, weighted, and signed description of anatomical connectivity.

机构信息

Cognitive Science Program, Indiana University, Bloomington, IN, USA.

School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.

出版信息

Nat Commun. 2024 Jul 12;15(1):5865. doi: 10.1038/s41467-024-50248-6.

Abstract

The macroscale connectome is the network of physical, white-matter tracts between brain areas. The connections are generally weighted and their values interpreted as measures of communication efficacy. In most applications, weights are either assigned based on imaging features-e.g. diffusion parameters-or inferred using statistical models. In reality, the ground-truth weights are unknown, motivating the exploration of alternative edge weighting schemes. Here, we explore a multi-modal, regression-based model that endows reconstructed fiber tracts with directed and signed weights. We find that the model fits observed data well, outperforming a suite of null models. The estimated weights are subject-specific and highly reliable, even when fit using relatively few training samples, and the networks maintain a number of desirable features. In summary, we offer a simple framework for weighting connectome data, demonstrating both its ease of implementation while benchmarking its utility for typical connectome analyses, including graph theoretic modeling and brain-behavior associations.

摘要

宏观连接组是大脑区域之间的物理白质束的网络。这些连接通常是加权的,其值被解释为通信效率的度量。在大多数应用中,权重要么是基于成像特征(例如扩散参数)分配的,要么是使用统计模型推断的。在现实中,真实的权重是未知的,这促使我们探索替代的边缘加权方案。在这里,我们探索了一种基于多模态、回归的模型,该模型为重建的纤维束赋予有向和有符号的权重。我们发现该模型很好地拟合了观测数据,优于一系列的零模型。估计的权重是个体特异性的,具有高度可靠性,即使使用相对较少的训练样本进行拟合,网络也保持了许多理想的特征。总之,我们提供了一个简单的框架来对连接组数据进行加权,在基准测试其用于典型连接组分析的效用的同时,展示了其实现的简便性,包括图论建模和大脑-行为关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e38/11245624/54fcdefee19a/41467_2024_50248_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验