Suppr超能文献

高分辨率雷达成像仪气象参数与 GOES-R 气溶胶光学厚度的多分辨率分析及其在逐时 PM 预测中的应用。

Multiresolution Analysis of HRRR Meteorological Parameters and GOES-R AOD for Hourly PM Prediction.

机构信息

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States.

出版信息

Environ Sci Technol. 2024 Nov 12;58(45):20040-20048. doi: 10.1021/acs.est.4c03795. Epub 2024 Nov 1.

Abstract

High-resolution, comprehensive exposure data are crucial for accurately estimating the human health impact of PM. In recent years, satellite remote sensing data have been increasingly utilized in PM models to overcome the limited spatial coverage of ground monitoring stations. However, data gaps in satellite-retrieved parameters such as aerosol optical depth (AOD), the sparsity of regulatory air quality monitors for model training, and nonlinear relationships between PM and meteorological conditions can affect model performance and cause data gaps in most existing PM models. In this study, spatial gaps in AOD obtained from Geostationary Operational Environmental Satellite-16 are filled using Goddard Earth Observing System Composition Forecasting AOD estimations. Furthermore, to improve model performance, meteorological predictors such as temperature from the High-Resolution Rapid Refresh model are preprocessed using Daubechies wavelet to extract low and high frequency components. The spatially gap-filled AOD, along with meteorological data, are ingested into a machine learning model to predict hourly PM at a 1 km spatial resolution in California. The model evaluation metrics (OOB (out-of-bag) R = 0.86 and RMSE (root-mean-square error) = 9.27 μg/m and 10-fold spatial cross-validation R = 0.82 and RMSE = 9.82 μg/m) demonstrate the model's reliability in predicting ambient PM, especially for states like California that experience frequent episodes of wildfires.

摘要

高分辨率、全面的暴露数据对于准确估计 PM 对人类健康的影响至关重要。近年来,卫星遥感数据已越来越多地应用于 PM 模型中,以克服地面监测站空间覆盖范围有限的问题。然而,卫星反演参数(如气溶胶光学深度(AOD))存在数据空白、监管空气质量监测器数量稀疏,以及 PM 与气象条件之间的非线性关系,这些因素都会影响模型性能,并导致大多数现有 PM 模型存在数据空白。在本研究中,使用 Goddard 地球观测系统成分预测 AOD 估算来填补来自地球静止轨道运行环境卫星 16 的 AOD 的空间空白。此外,为了提高模型性能,使用 Daubechies 小波对高分辨率快速刷新模型中的温度等气象预测因子进行预处理,以提取低频和高频分量。经空间填补空白的 AOD 与气象数据一起被输入到机器学习模型中,以预测加利福尼亚州 1 公里空间分辨率的每小时 PM。模型评估指标(OOB(袋外)R = 0.86 和 RMSE(均方根误差)= 9.27μg/m 和 10 倍空间交叉验证 R = 0.82 和 RMSE = 9.82μg/m)表明该模型在预测环境 PM 方面具有可靠性,尤其是对于像加利福尼亚这样经常发生野火的州。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aef/11562723/9e51adaccf9f/es4c03795_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验