Suppr超能文献

PM2.5 浓度预测模型:CNN-RF 集成框架。

PM2.5 Concentration Prediction Model: A CNN-RF Ensemble Framework.

机构信息

GIS Research Center, Feng Chia University, Taichung 40724, Taiwan.

Department of Land Economics, National Cheng Chi University, Taipei 11605, Taiwan.

出版信息

Int J Environ Res Public Health. 2023 Feb 24;20(5):4077. doi: 10.3390/ijerph20054077.

Abstract

Although many machine learning methods have been widely used to predict PM2.5 concentrations, these single or hybrid methods still have some shortcomings. This study integrated the advantages of convolutional neural network (CNN) feature extraction and the regression ability of random forest (RF) to propose a novel CNN-RF ensemble framework for PM2.5 concentration modeling. The observational data from 13 monitoring stations in Kaohsiung in 2021 were selected for model training and testing. First, CNN was implemented to extract key meteorological and pollution data. Subsequently, the RF algorithm was employed to train the model with five input factors, namely the extracted features from the CNN and spatiotemporal factors, including the day of the year, the hour of the day, latitude, and longitude. Independent observations from two stations were used to evaluate the models. The findings demonstrated that the proposed CNN-RF model had better modeling capability compared with the independent CNN and RF models: the average improvements in root mean square error (RMSE) and mean absolute error (MAE) ranged from 8.10% to 11.11%, respectively. In addition, the proposed CNN-RF hybrid model has fewer excess residuals at thresholds of 10 μg/m, 20 μg/m, and 30 μg/m. The results revealed that the proposed CNN-RF ensemble framework is a stable, reliable, and accurate method that can generate superior results compared with the single CNN and RF methods. The proposed method could be a valuable reference for readers and may inspire researchers to develop even more effective methods for air pollution modeling. This research has important implications for air pollution research, data analysis, model estimation, and machine learning.

摘要

尽管许多机器学习方法已被广泛用于预测 PM2.5 浓度,但这些单一或混合方法仍然存在一些缺点。本研究整合了卷积神经网络 (CNN) 特征提取和随机森林 (RF) 的回归能力的优势,提出了一种新的 CNN-RF 集成框架,用于 PM2.5 浓度建模。选择了 2021 年高雄市 13 个监测站的观测数据进行模型训练和测试。首先,实施 CNN 以提取关键气象和污染数据。随后,使用 RF 算法训练具有五个输入因素的模型,即从 CNN 提取的特征和时空因素,包括当年的天数、一天中的小时、纬度和经度。使用两个站的独立观测值评估模型。结果表明,与独立的 CNN 和 RF 模型相比,所提出的 CNN-RF 模型具有更好的建模能力:均方根误差 (RMSE) 和平均绝对误差 (MAE) 的平均改进幅度分别为 8.10%至 11.11%。此外,所提出的 CNN-RF 混合模型在 10μg/m、20μg/m 和 30μg/m 的阈值处的剩余误差更少。结果表明,所提出的 CNN-RF 集成框架是一种稳定、可靠且准确的方法,与单一的 CNN 和 RF 方法相比,它可以产生更好的结果。该方法可为读者提供有价值的参考,并可能激发研究人员开发更有效的空气污染建模方法。这项研究对空气污染研究、数据分析、模型估计和机器学习具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验