Kim Kihoon, Havenridge Shana, Zaluzec Nestor J, Kang Donghyeon, Jayaweera Nuwanthaka P, Elam Jeffrey W, Mulfort Karen L, Liu Cong, Martinson Alex B F
Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.
Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.
ACS Nano. 2024 Nov 12;18(45):31372-31380. doi: 10.1021/acsnano.4c10943. Epub 2024 Nov 1.
The energetically favorable formation of atomically precise clusters, known as magic size clusters, in the solution phase enables a precision nanoscale synthesis with exquisite uniformity. We report the synthesis of magic size clusters via vapor infiltration of atomic layer deposition precursors directly in a polymer thin film. Sequential infiltration of trimethylindium vapor and hydrogen sulfide gas into poly(methyl methacrylate) leads to the formation of clusters with uniform properties consistent with a magic size cluster─InS(CH). While an increase in cluster size might be expected with additional sequential infiltration cycles of the reactive In and S precursors, uniform properties consistent with magic size clusters form in multiple polymers under a range of processing conditions. Ultraviolet-visible absorption spectra of InS(CH) are largely independent of the number of sequential infiltration cycles and exhibit air stability, both of which are attributed to an energetically favorable synthetic pathway that is evaluated with density functional theory.